UOP staff
ΚΟΝΤΟΝΗ ΔΙΟΝΥΣΙΑ-ΠΗΝΕΛΟΠΗ
ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ
/9j/4AAQSkZJRgABAQAAAQABAAD/4RKiRXhpZgAASUkqAAgAAAAEADEBAgAHAAAAPgAAADIBAgAUAAAARQAAADsBAgAHAAAAWQAAAGmHBAABAAAAYAAAAA4BAABQaWNhc2EAMjAxNjoxMDoxNyAxNjowMToyNQBQaWNhc2EABgAAkAcABAAAADAyMjADkAIAFAAAAK4AAAACoAQAAQAAAAkCAAADoAQAAQAAAG8CAAAFoAQAAQAAAOQAAAAgpAIAIQAAAMIAAAAAAAAAMjAxNTowODoyOSAxMTowOToxNABlY2NjY2U4MmE1MWZmNDNmMGEyMGE5N2E4NmNjMTc1ZQAAAwACAAcABAAAADAxMDABEAQAAQAAAEwCAAACEAQAAQAAACQDAAAAAAAABgADAQMAAQAAAAYAAAAaAQUAAQAAAFwBAAAbAQUAAQAAAGQBAAAoAQMAAQAAAAIAAAABAgQAAQAAAGwBAAACAgQAAQAAAC4RAAAAAAAASAAAAAEAAABIAAAAAQAAAP/Y/+AAEEpGSUYAAQEAAAEAAQAA/9sAQwAFAwQEBAMFBAQEBQUFBgcMCAcHBwcPCwsJDBEPEhIRDxERExYcFxMUGhURERghGBodHR8fHxMXIiQiHiQcHh8e/9sAQwEFBQUHBgcOCAgOHhQRFB4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e/8AAEQgAoACIAwEiAAIRAQMRAf/EABwAAAAHAQEAAAAAAAAAAAAAAAACAwQFBgcBCP/EADcQAAIBAwMCBQIFAgYCAwAAAAECAwAEEQUSITFBBgcTUWEigRQyQnGRFaEjUnKSwfA1sUPR4f/EABoBAAIDAQEAAAAAAAAAAAAAAAECAAMEBQb/xAAiEQADAAICAgIDAQAAAAAAAAAAAQIDERIhBDETIgVBUTL/2gAMAwEAAhEDEQA/ANZY4PC0m2MdOaM2NxobeM1hOiIFiCOlEyScEUo6rv5z0osqgnHNQIQYJGQOelFYEN8Cj7VAGOTRXcgnpgdTUCdVsjBojON2N3SmWo6lbWVrNd3NxDBBEMySSOFAFUPxB5s+HrJpYtKtrjVplH0yY9KHd8k/Uw/YUylv0K6S9mkFgFzRd655YftWE3fnD4nnlIjstJhiOMqkLbv9xbinlr5m3B2G7t5oyf1JKCB/IpvirQnyz/TaiV60Rzk8GqD4f8d219IIxMHz/m+kirnZX8c3GNp9jSNaLE9jpSemaUOdwwOtFXnnijO44wKARNlI96Kq9+aUzkc8YoKSRioQIBz1oUpjB5xg0KhCU28UUM2MYzRpSSTjpik1zkf3qMUDHnkDNJyEnnIo0mASaSmZQOnNQIlKzLyTiqV458TxaXC0W5vVwDtHYe5p/wCMvE9toVm08xVyvCxlsFj7CsN8T6zda7fzXTDDzuNqKchR0AFWY45MS7UoZeJPEWoazclLi4kkiDZCBjsz74pnZ2ctw20d+K0bwh4GhCxTXBSTKgnHIrRYNFtVUKLW3UYxhYgOKseaY6SBHi1k7pmAHR5ozgRl2PQDrRV0XUJnwlvMCOOVr0RDpFpCp2W0IJ77BmiXGnQuu0xLj9qR+Sy5eCjzosF/pk3qMjrtOckVe9A8cSJAkc7BWwMknnpwKuOtaDazwuvpKG/aso8T6G1hK8gjO0HgiirV+yu8DxdybJ4a8WWl+0dtKyxTNgAO3Un5q1ry/OK83eH9ZljcFwv+EQV3d69C6Pcx3VhbXUbqyTQq4wc4JA4pLjiSLVIe4LMSMfxRlBUdcn2xXVbAOKBweetIOcJ746UK4fsKFQhLljnA6UXoBXcjByciky1QUJM3FMb+Qw27ycYUfzTuUbj1FNdU/CR2M8l3J6cSIWyBklh0AHck1AmC+aOp2+o6/NpwkLLaKFZlbhpDy38Zx9qjvA+mHUNUZQDtRMk+1QN/JLcatPcyEs80zM5+Sa0fy3s0it3mZlDMxOScAL/3Naf8xsphc8hoOgxKlrHkYwoAFTQKjGATUNp2oaWVCrqlgSOMC4Un/wB1N23oygbJEbd0IbIrI5Z05pHSVI6Uk5XOMU+Fqdp3OAo71E6nq2jaexS4uzu9lXJP7CopbC6lCN5EGHuapvizTPxFq6Ae5GKtDarBcxk29nq0ij9f4CQIPvjFRt7cQzbkDfUB+VlKkfY0UnLFeqWjCriN7S6l2ggqSDW1eVl4k3hmzibidA249mG44/gcVmniy3S31CYEYLc57HNTXlVqslvM1hJGf8F9wI64PWtWRbhM5kfXI5ZtMTbgKXwCvA4plbSK65B/anKHHQnFZjToUIA7dKFFye7cUKACRf8AICBSeM/tSrYbhT/NEbgAcUwAjgDLZFZn5z6/Ja6athZFjLM2HkzgRr3I+T0/mtHvHKQsfisp8ybdLq1nmMyo6LnGKM+wP0Y6146lgvCE4PzWyeXNvD/RdPurm3SVWh9QCRcjJJ5I71kdjZR3t/DbO/55ADj2rf8ASrSEaZBawgLHHGFUAcAVbmrSQvizum2RPiDxHZRaZDqU2gW8lpLcG0gcW8SySNjJ25Awo9+M040CziOm22t2qvp8dzareQI0mBKmTxgHAbg8VMw6PaNaGzlRpLViC8LncjY56GhqkMEMZS2jjRSmGYJg4H6QfalVzxNSiuRLT6kr6QJOfqXNQSWryyRvarD6zRtKSSNwCqTjnnJxgAd6dN/4dFA6IKNpccMhX113RjkHGcVXL0+y6peuiq+GvGmsaxbXc0dvtjso43lRptxYuT9I4H1DHK1NtINUtoZnT6sZBPUfGambyzs3G4QRYP8AlpqIFhB2LhfapbW+hMctLsyLzVs3tispztHWonwRqEVhriNcOwgnURsRg4J6E/erp5rxxS6HM7ZDL0PzWXW0npC2YgEMgJGKvjdYzDn+ubZ6Q0KcPGyZD7DhWByCO1TS5x071nHlxqstxbL6hLoBgtnn71oUbgqCMjp96oa0XJ7WxxjJ6cUKAOFHOaFKRkgyfT8/FN3IVfq7U7Y4XrTWeNWBznB9qOxCM1q89G3YlGICk59h71ifj3Wlu5HWFSuRtJz1q+eZA1Sx0y7v4WQJawljIW7ZA5HvkisOv7u5ncyTEO79yKshbFqtBdOdo9UtWUciUGvQfhZ91lGSQSRWFeFbSfUtXjtoImlk2lyq9SF54ravB8vq6fESjJImY3VxhgRxTZktDeJvbLhFEjJgDn2ph4hg2Qose3eTyPgCntrIRyx4FNr8maUEHGDwTzWdaR01savqGknwyl0syAH80u8FAOnb5pXw6scbsruk0EkYeGRGyDz7jtRbfRrZbUJsRY2/QoAX+KVsbaKzYLHtVQNoA4AHsB2pmDXRLXVj6UayAAA8giovUSqxntxUoJgsIXcSO2ai9TUOhNDoXv8AZmHmHFdXttJYWkZkmkBIGe2Mn+1ZPNIWk2hdpQBce2K2u9J/qeo3zRxPHaWrKokYDDMCAQO5HWsdS1BknByWBHI7k1qxdRo5fkrd7LZ5S36weJEsprmRIZlzwuRv7AntW62ScHuM8ViXlbpgk1WZeUlABeYnASPI+kDuSRW5W4DYKlcDoKov2W4+pHCqMcmhXcEsOmKFIMx7KecA0jK+E60pyxyeD+1IXKB4iucH39jTCFG8143vvCuoWsW8ymMOFH6trA4/t/asDnf1EjwhVsc5rcPGsd7ArSSPlCcZU/8AFZFrMaR3wAGAxz/ejiv7cQZcf05bGVk99YTW+p2dxNayo52SRthlNaZ5QaxPqFtP+KmknuElIkdzktnkE/8Ae1ZdJcs96oXmPJGPin3grXj4c8RrcyF2tZR6c4Ht2bHcjr/Na8kJz0ZcOXha/h6O3HgDv1qA1fV7+2uRBHaphv8A5C/9sVKWd4ksKOjJIjLlXVuGB6EVwRJPLiSNXHyM5rB6fZ3cdJ6ZDR6jqp2rHH6jSdAELfxgU2bUtZSYxwiBpOm2QHj+Kt9pYyRHNncXNsCMEQzMmR7cGufgIoclIwD39z96d0tGms0aa0I6Wl4lov4mdJZDySq7R9qc3bD8OcnBxQRgi4JxVc8ca5/TNIuJIQZLn02MSD3x1PwKSFyZjyUpRjXmTcpd+NbmOJtyQYiyB+rqf7mmMQbc4yd6kH9zikJNsUsa3ed8hMs0g/MxNEgv+qkY6gGukpUycOrdU2XDwhrg024X8VbyNHzkxEbi3br2ravDup2t/ZxyQSZ45VuHH7ivPOhSrPMVc4OORnANbL4EjEUInKek7RKuD+oZyD/+1iyLs243uS87s4wMUKREuU+aFVlmiRY7RnrxTW4lyhwM04Y/TzUdrF5FY2hnlEhO4KqxjLE0whRfMO+dgkKaZePwSZUUGMD5OeP2rLNRiFxM0gBJUcAVcvHF14nlsVvNWSSztZFLWkabWMq5/M/1ZX+Kza2nnnndmmMakEKPc+1PGP7bEu/roJaWzL691IpAA2pn3Pems0Qlmk9IZCrk0W7ui7m2ic+mpILe/wA0SKUxxskTEb/zfIrdJz6L75X67qNnY3Fs2bmyhkXCn80O7PT4JHStK0nXLd5V3NtDdCayTypkDa5e2rY2zW2furD/AO60WLTQJiv5QenzWTNCVHT8TJTgv9nq1sIyQyN9+lMtT1q2QMFdWbsFqvQ6bMB9IUill06UjDkAewqnSNTtiF5rcoGI4yzk4Vfmo/VtOmm0e5lu2D3NwoyxHCjOcCrDp+kIZRIyg46UrryiCCNBF6jykqqYzkAZJx8Cimk+hK212YH4mgU3Y2jkZXg9fY1ARqd+Md6k7u5Ml7I8UnqkkgMRtAGenNMLht0mQoU9wK2+5OTWuQ/sy1uy3AGcHg1qXl/rf4uOGHTC1xPFk3FmxCyEdS0eTz/0VkYmkjt9mepzikfWkEiyI7I6nKsjbWH7Ec1XWPkiyMvA9V2t1Fc2SXEL7kcdcEc9x8EUKxbwp5o6lZTlNegGowSbQ8yARyjnlyAMO2OpwCe5NCqHiaZess12ehsM5CxqWYngDv8AsKqXmD4i0HQEjj1PVLZLyOQSfgoj60+B7op+kf6iKzPzA82tWv7+ew8JXc2maSm6IXKKFuLsHgsWPKKecKuDjknPTL0CpkgDnr81dHjtrbKL8jXov3inxqmsOUt7NoYCuB6jgnHXoOBVJllAj9RGwwbGP+aS3kkKB16UlICrYPX2NNw4sR5HS7BG8sO4x8bxtJIzxXUBBpa5mWeMRRosSqxZc8/bNIn6Uz7Vojoz130XnywtZI2/H7kCyT+mQQcsoHY+2TWvQ2yyAEDmql4U0j8D4V0hgoINsszkc7i/JI98Zx9quekuomCZ3BgCprDme2dbxY4yOraAlcUtHaFmwBnNSsEEZXOOetOraJAcgc1Qaxlb2gjjxjkVDeIwLWA3xZR6CPjJHdTwKst7J6MJfY5HsqFifgAdazrzM1nQLbw/f2ms3kcuoyxEQadb4keIkHDSMPpUg9ic/FGE2xLekef41PorI+/A/UB3oXapGQYpxJkZYjt8Gk9zlApY4HbNExxXUUdI4brs5ncBnmuY5ya6OKB65puANhkJ96FFUdqFLoi7FTwOBRT9qBY8kjNFJycmrF6F9nT1pa5uRcSCSSNQ+0BigwDjvSJZQOtcBB5pXKbInoMzKxG1doHaisCSB710D4o8Y3TJGqkliAAOcmma0hp7pIsfhrxBrWhDbp18wiJyYJQJIif9J6fbFWjS/MW+tbgzS6JYzEnJWOZ4wD3wOcVRIwduMEEHFKxk8nsK5t6PRY4TRrsPnIixhT4QG7PJ/qRxj/ZRJfOTUTGRZ+GdNhfs011JJj7ALWWI4IDLgj96MLgbygC5pUXfDH7ZY/EPjHxPr1yJ7zVHt8IUWOyzCiqeowDk59zzVS1JRFasFAGf5NOJJ5BEzDAx8VH6vJmYxLKsqA/S6ggMPfB5qzHp2kiryqjFiehiOvXFD4rvaucEc5rpHmmcwKFD6fZq6CpyfqoA2cJx7ZoUN6rn6M/ehSNJDJg2kjrQI6YruDmu9hVmhdhMc4rqgCu4zXKGiHQcUAMuD7HOfahRouWz9qOt9B9dkhEAbfIJHFO7oSpcyrPEkDnBKKAFHA/4ppaMvpKhVcpnLZOWB96exmWF45EdFbaGRlYNgEY/9dq5lpqmmel8aleNM5I5lcykIC5ydihR9gOldDuqGPefT3b9nbdjGf4rkUirIp9KKUKCNrg7TkYzx3HWi7huYOpKsuFYNja3Yn496Q0t6RwhmUMNpUtjBbn+Kibli87Mf2FSF4wiRxuUsMjcnRvkVF5PvzWrx529nI/JZelADXARxQJGcUK2HHOkj/LXMdqFdx3ok0FC5bBFCjNweaFI0FH/2f/hAtdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuMS4yIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bXA6TW9kaWZ5RGF0ZT0iMjAxNi0xMC0xN1QxNjowMToyNSswMzowMCIgZXhpZjpEYXRlVGltZU9yaWdpbmFsPSIyMDE1LTA4LTI5VDExOjA5OjE0KzAzOjAwIj4gPGRjOmNyZWF0b3I+IDxyZGY6U2VxPiA8cmRmOmxpPlBpY2FzYTwvcmRmOmxpPiA8L3JkZjpTZXE+IDwvZGM6Y3JlYXRvcj4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/tAHZQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAPhwBAAACAAQcAVoAAxslRxwCAAACAAQcAjcACDIwMTUwODI5HAI8AAsxMTA5MTQrMDMwMBwCUAAGUGljYXNhOEJJTQQlAAAAAAAQ+eblh7+95FVFnZ9/Gc1Sov/bAEMACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwoNyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAm8CCQMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAABAgADBAUGB//EAD8QAAICAQMDAgQEBAQFAwQDAAABAhEDBCExBRJBUWEGEyJxFDKBkaGxwdEHI0LwFTNS4fEWJGIlNUOSVHKi/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwQF/8QAIBEBAQEBAAMBAQEAAwAAAAAAAAERAhIhMQNBEwRRYf/aAAwDAQACEQMRAD8A91L7gSrdjNbAe3ocHqDlWRraw3aBYCuNi9vuM27JuAEqF8+B3tyIQFcAryBuhVLb9QLAP1Apg7v5gFgfqRvbYF7gRvcjj9gpEteQFS+xO3zsS6dBACQCx8bCSVBQ7mC9yMN0BLG7t+AW6I3uA6d8Ae7B7hCJtYWk+Ba8g3CixXvwBpkV7gFtr9ifVsB3f6BWyQBfAFsFAfIAt3wQNpIClbAm5PBLZEECiNMf3F/sAvpZEgvwFbBUFY12I3uBN64QO+l7h5QrAZS9gt2hFwF/cBk9gp3+4q4DHkBq22F4Y10xG1ZQyqtwSaZE90B8BAv0sDkyduwaqiKDfALCRpgLa9WFKwUxt/DAKIyJP1A/uAOAqqI0/UOwE2r3Jt6ka9ABHQcnYGxm1tQJtUELdIXcf80dwJKiqC+4bI1uB8EEbsAUDfcBa9QVa4Q3C3Fb8AL2tS8BlfoSq3GtsCu6/cG7lZY7FtpgNTSEbblXgZyFv6uSg1RLpjN7ciO06sirE/YDVrcCG5RBU2yW2NTvgPjjyUJZN2Gt6DTQEjwxlu7EsisYHbFdBtUVTlQD7UBNFSlsNaXgCznfxRORL9gqXsEPdCvfyBNPYABq/I6hFK/JVbSFeR21QFrkuCIpUvLCp7bAWX4CJCS8rcLdvgoa72BasG1rYFbsim5FluiXuRABVVh5RGBJgCg8eLZLF8rkodeiGQpL3AbncV/YeKoD4AC4quQu64DH3I2q3sBfHAsm64LFTWwGuFZAlvbYDbsba+WClYEVE9hqT3IltQA4XkC/Lv6jNIVgSyeAV/MNe/kAhqIt+AgbpR3FldD+BJPfYIlbbg4Gd9oHb4AjZHuBq+Q9tADev1IwvZAW6AXxuV1bLu0FIBHFoK3GIk/BArEfJbLj3FKKndkTt0WP7AUfIA8OhWndlqWz2BT9ApV/AeheAtutgC0TZFfe/JHIIZ/msLYiYHKiiVbGulQnfQjm2wLGxHuL3NsLTUb7XXkAUtwU2rLseJzv6G69C/M9LpccpZ8uOPat1J15oCrDhcuUWS0s2k4Rbv0R43qPx/DTarJp9HHBKl+be7/kcbVf4hdYcHHBl08e5JO4O1w/6DE2Pp2LpuoytvslSVtvb+Zl1kfwk3FtOS5Vo+QZvi74hzzfd1FpOPa1FOqG03xX1fC/r1EcqqvqRcNj6ZPqMb4J+Nj222tkeMwfFGLKoLP8qMmnbXd7m2HVNPlpfNjum7LhseieujO2l4Dj10ElZyNPkxZIvtmpVG9hnkxut1urJhruw1kMi2/iPDMuLR59ZK3i9mWY9TKM074JivQue6CpehysetvZy3NeLPF1vuRWoK32KllXqPGYRaq4DSK1K6sN7iKLSFa34Je4b9wIGrQtu9mOn7hDLgWQwvdu/QKidAbT2J3e4O4IattgPkCkRv0ZQqX1WNe5EvUVvfYinvyRvbZir2YfAROfJHxyBMK3Chv7Be6AwqS43AleQ0Tn9xgNcip/mHtsWXgMrPAj2D4F8gH0GA/Ay/QKHkm1+7C1XoJ5sAN7CqQ742EafigCGLpijJNfuAJMS/5lkosWq8AKFEadWKrvwA17E/UHrwLb4CiwvgnCFlJLwEIwtNi8se4qPPkoXdAm1x5K8uZRbplLzXdsC7mVEnil4ZR82stRkr+/Bh618RafpujnWfFPPH8qjlXJR0Z5cOiyJ6jNjh//AGmk1+hk6z8a9F6XpprHDFqs+yX+eqfD4SfufL9f1/qXUpynm1WVd0rpT2ME5Tyu5yk/u7NSM3uPT9R+Pep67UZJ6TGtJimto991+3vR53Wa/V67N36jPOV1ce506r+xRGLT5Ha24NeLF6VwjW62YXEIGmWcseQKlygSimwqI6WxfE0kMe/Jqj3pbS3K4rcuUlFF8U8i/MyRdOTqt92jfpuo5IpJyk6VHPc1K7K1Jxexm8tTp6XB1hQaU03H7m3F1OGWmv5njnkkX6fUyxvZkxudPZ4tXckk+fc6WHM+xM8Xpdd25Yt8Wd7T9RTitnwYsbnT0Ec0nxexox6i+bMejywzYO7dOuA45PvaM2NOpDImuWWqe1GKEqRfGafkyNMaaJ+okZ0OpFDLgX9Ru5UK5ANe3IvjkCkxW1fLALfqRMidhTXoAKGWy5A37gct+QhnwK37E7vfYDf1LfYBiJolsIUa9A1S9iK0uSJ2gBQK3G8C37gFP3DfuK+SAa6RK9gpbBorKJ7cC3ugqLJJOiAthTK728Bugp2yX7CqRLAlAoHcRSYES/mNWwPuCwJasj9gPgQBtrB5sHgR3fIU3dTF7vAPIskA7kK2vQi9yuUktwgzl7UZs+VqDphyZb2MepnGEG5NL7ssFLzttq/Pkxa/XuEXGGRJxe9NGLW63sjJRdPweY1GpyrJKcp33Pc1Izbjq6rr+sxKSjnat3bbf8L2POanVZtVllLJklJSd1JtpAzZ3NuynvRrx9sXoGhkwXYEdPFz0XdjeCVY8Y2ixPqprcnbaL1ifoF4/YpihY2OsbouUCPYmrimnFkk32ljVsVrwTVxRbCpDvHYvymTUwsp0SM9yPG/QVRafA0ytUJJUzo6TU1JXbOOpMuxZHB2Stc+ntdBra4bSfg6Om1LnJto8XpNe+7t3vwdrS9QljdN2ZsdJ09K9TVbFkdR4un6HnVrp5HszTDVOMe5vejONa9Fjz3W9miLbRw9H1HC2lJvdc0dGOsjKSjGzKt0WR/qUxzK+S1S7tyKLe1EUb4A2iKXoAyW3kZRezvYRPcbuYApJ7iuW+xHJ9wK3AbaibLyCt0Cn3ANY63QnYxopoA2/JFSXoAi35YD0q5EWzI2yKwg0HYWyWFb62okUGk0RbIqADetwgbQC8OiNv02I36BsgWtyO/A4L9gBwt0Kthm6RX3MBm9wK09yXsBNgM9/AO32B31t7h7rADXoK478Ecmg9wCtLmhWrG9xZOuQpJOkUZJIsk7ZVkX0tvhc2VHP1uqjijbpeGec6p1PLmqMXUVt5/uaOs6qs+TEnHuTadP7nByZ12O0akZtV59V3X5fuzmZ8t3fI+afLowZJuUjpLHLrS5HuBB7Wy7HgcvBbcZJC2WKFl0dLNuoxZpxdN1E7ccbaXLHks4rNjhZphp296NEemaiN/5Uu5GrH07VVfypU0S9xufnWOOnYXpndHUWjko7xd+4v4eadVuTza8HKeCnTKsmFt7HWlo805UoMvh0vJ2/VF+xPJfBwPlSirplSUpPjY9b/whOP1J7rkSHQYX3pvjgnkvg85HBKhlpZtKkz0f/B9rt/sWw0ccUaY8l8HlcmmlBbozvDKTpI9Zm0cZ8rwY56NQVJMaf5vNfLoErSpHZzaBLemYcukq3TLrN5ZsEnGW12b455La2YlHs+4Hkcdy6w7ODP279zs1ZNb3RUU72POLVOjRg1FyVsmJK72nydv1W/3OjpOpKOSKlKkcXHK4bCwhN5VuyWOnNe50+qx5lFrIm2632Orjh9CafJ87xZs2HLF451TTdt091zv7fzPX9J6jkzwUMkVs6W/gxY6OrW1MiikK39grfyRlZGhrXaIltyRW0FDZ/cP6AUbY6QEXK2I+bSGoiQQIu92RtXswOuBePQKYF+iQU722A9ggWwrgjqkTwFK+QB/1DbAdHYV7IdK4lLe9FQyewlu3sN/ESdrgA8k39gRI/uQFPdbDUJH0HAWW4iRZwvAKtbAL+gaA0QAdlu6C1QbBJ7AJK74B3bhlKhHxdbgSUyqWS2wzlUTHkz9ttKyi/uttf7/3sZ+oZFptLPJNxpLdOW653owarrmHQ4nOdSydyUYKXPP9jzHVviHNq5PH3NRTtJSdJ2/6eSyFuOfn1Ty6nJkdLum3/FmPNk29QSm5SteSrM3W505jj10z5sl8FeODnIau6R0tHpJSlH6eTWxme1OPS3Wx0MGk2X0m6Ggkkn28nV0vTn2O+TPXcdufzZum9Ox5Mn1p1fp7r/uehjptPjh2xxpcWxMGH5SpIvUGzlbXacQixYbvsTfr+wzUa/KiyOOvA6x+xnybyMM9PGXj+AMegi221+h0vlhjGttxq5GfHo8Clbgv2X9h54MfhV7F1P0FaJ5HizzwKSaS2DHDFRL1EDVF0xllgjTM09Km7WyOi42hHAamObLSp+pTk0afqdVxornEaY4mfS9sdrOVn09uq3PVSx2mmueDm59P9V0WVOuXk8+naZkyYdj0eswqtl/A5GTC09zcceuXMliokLUlRqyQozy+lmnLG/BncElZtx6i0q5OEs1Pk1Yc7vkv0lx28TuScjv9Mm1KKieTx5pNJ2dLp/Vcmm1eCLpw+YrtpbWvLJ1G5XvIfkTvlWOuAfLXy4Sg+6MoRkpezVg4dM5NLo7rkKewIflInQVEr4LFSXIqoP7ANwhXLhond4ImAN2gOND7WheQIo/YFbEvYKargAKKrclUDurwHle4Ae/kNSIv05GtewG5NpCVuNBbbkcfQqFaFq/BZW24OAK0tw0G9uCbkES3Cgb9yCvsAr3XIqTXkd78UTxwAjYIuwsS6YDN07Fcr4DKWwl7cABu3uLP1vyF7IoyzUVuUVZ83bas5+XNGMXOT+le6X++Bs+XuTr7Hkuv6iWSHy45KcfR87Nf1EiW4xdU1v4nVTVdsYSai7+5zZNNmTNlcp03Y0G3udIxel/duJlltQO4s7e9cHSfHK+6XS4fmZYr3PadP0OHHjUquX3PPaPTpRTrez0nTcU5R3e1+pjrqO3HDYsKulE2YsLirQsMdbGqC4ONr0yDGHsWqCDCJYomWiJew3bYyQUiKXtJ2llMle7ASvYFew7TAti4qun4RGvYs/cVoCppAotoDQRROOxVL39DS4lUoAUSW2xlzY75NcthJK4liVxtRp0+TlZ8C3PQ5Y2zLLTxk/q4Nc1jrl5LUYWvJzckWnTPS6vAozdepx9Vh+rY6Rw6mOY07LsLamgTj2vckWrRuONdWOSMYplizRk9lb9LpMx4u2caseMeyXcuUTpvl9W6Zq/xPStDOcrk9Lje3ldqLpx3e55PoPU9THS4MPf3Qx41FKnttVLej0cNQ8iVqmzjXVqhLwNsUwmWKV7kD+xFuC+Ar9KCoS1QJNWK20FWckfGwqbG8BESVWR+yBdKrImgDS8k8EYtMA/clr0BRK9wOirYrbTCrQJ78BBvYV8ATdEt0AGndjICTD5Kgbp2HwRPwwNoioK36B8CsCfcrLG9iuwI3SFbQW9qFlxxuAkpKzDrsiaqP8zXLbG29jlwk8upae69iwUa2PydG8juq/SzwGqeaeaXfJtW9j1/xh1HJosWHT41GpP67kr/AGPJY5rJubkTpzMmKXePFUqNeeMbtFDqzeONJ5N2kgpLfmzGdHp+JuS2bVjq4vHOt+PFKLSS2bPSaGPZhXajFHTrsVo36R1Htfqce69XMxsxtvwaYJ0tirGkaYKkjLenirHr2BFj2TFLQyv0I2TuCjuSnuS9gppAGhKH7kxbVACgNBA3QAoVrYl2w2EVN70B1RY1b4EaCs8o8/YqcfBpkvcpathGXJBMyypNm6S3M2SG7LKlcXW47lscPUQakeoz40723OPrcFu0dOa5dx57NHcp7TZnj2yrkzbNnSPP1FuKXbEeOTudMoWy5FUqnyavxmV6/wCE8uPUdTelntWNtb88/wBaPYTgsU+1eHW58++FskcHXceVuK+hq5cH0fJlx5acWnaTvY4V35+Bj4LVsUwLEzKrLDfoIt0g+Qp3uMlaWwiHTS5YDcL9QeXwG7A2gEcXfgiixk1xYbpJUAKdLgL4CwbUAFxexP2JYANzkkBuyVZEgyFBTI+AS4SQUd2RL1BwSyiPkBG9yW64IJQsqXI17Fct/BQHwTt2sF7AtgFqwOO1kvgEns9iDHq8i7e1epT0+eHFncsv5U7aTSv/ALC6p/VVcnO6xOOm6Jm1Dyds00ox7qbLB8/6/wBS/wCI9a1GZflUpRj7KynDkpJexj7W3v5du99y6Mq4Nxy669tU5JlcgKVhqzrWN2pBXI9L0jF3yX0frZwcEE5q15PW9M7MCX0nPp24jpSxVjuiadb2WSyqceOR8EVaOVd41Y7RensVLhFkSN4six0/JXEZPYimkLYd2G62IqJuhk/cH6hSKoN7kXN2GmD9QyjbvkVt+oXyKwoceSNqwpWRxfPsEC7/AGAwk3AqknfJW0Wz5K26CKZx+xnyRs1vfkpnG7oDBlhcTl6vFS48HanFGTPjUka5rHTyGrx036owKP1HY6hgcctXyc5w7ZKzty83bPKO5U6UjZ2WZssakb6c47vSccV9dpOvJ6vQ6hqUYtpKqpHiOk55R1Ki39Nb7/c9fGLhuuTlXbn49BjkpJMsMWhyOeNX6G3k5trIsN+iFhsuBv0AfknD9wRa9iSasCy7JQiatDpqgoV5G2oiZLQCvfyTheA19gvZBCVsQLoncvQg2O1uBNvcLVoC2KhqYPuG6BLdADyR7A4RG2UQgLJZBO6thJMd8CS3Q0L6kSsleUNFbcgB7NEdNbjMHO1AYNVgaTlFN/ZHjvi7U43occI28nffO3+/7H07Bgi4N5F9K5pP/fg+QfFUIvrGTZqH+lbpLb0Kl+PMS3k+efJEy2UY+Cp7M6T65VZDk0JVGzPj3aNfa+w634zzGvpmL8RmpbVueowQVKkcfoeGOJvJvbatHfwpbUjh1Xp4jVjSpGjHs+CnGtlt5NEF6GHVcuSxezEgpMsivUY1p488jUBLyMrYw1Ix35Gcd+RoobtVexPE1S9mFIt+Xe9gcKJi6V7eQNWWLHY8cOxTWdxbJ2eyNUMCfIXiinVouM+TJ2/yI06NDhG+RlhUo+f2L4p5MDuxXZsnp6t0+L4Kvw7/ADNOvsMJWaSKJbM3fh5NPti39kZJpKVPYzi2q2yuT2LGr4KJXYFczNktI1TaszZVsP6WenA18bnfk5OTHuj0GsxNps4uRpZKZ34rzdxkezpmbOreyNeVRu0Zpb8nX7HC+qbSSXfzT9Ue06fqo59Njtput35W7PAJyxybTo73Q9X2Wm/D2Zx6dea9josvbkUEnVHWjLb9Dz2nzxtTXLR38E4zwxa3deDk7RantyOtytPei2OwRKr0C02iVuN4ClWwyv2AlvwNS9ADyvAthiTtTCCnsCTJwRUwClaDQEvNsb9wNSlTA9wL7DXSVIqCqXIuSTvYDlfgV3QBvYi34/cXciboA8cgTd+wN7Y0Xa4IC2q5EbokrAgG7klwSL9iPdcEvYAOXoKnLvT9At/zKc2qhig2/wCAFfXusTx6XDptJXc5f5kqT8rbj0s+YfEDnLLFu+5X4o9bqcsMTllnk7V3Xu+X/c8Tr9T+Kzznv+Z0mbkY6c6KdUJKDsvWzrg0QwxcNzpI52smKNSR0o1NJGOcVF7GjTv64pltXiO/oF8vGkdvT1KqZydPFdsWjRLVyxUoc3ycunp5d7HhXZ3SdRT5BPX9P00njyanGpxe6Ts4sOm9S61iax45RXd5bSvdeP8Ae5Zj+AdY335NVjir/wBLTk3b9V9v3JI1a7eDqfTMklesgrdbmjNrNHj/AOXmjON0mmeV1vwT1aMa03y8lOvf1vj02MeH4Y61jXzMmCMIOTdfMdr0NYx5PcR1OGSb+ZHZW9x4zi5NKSbR4bLpOp6aEHkx5FUuFJvjh8kwdZ1+jd/Kjk3p/MUl/UWLK928kYuu5WPGSb52PJ6b4ieWT+ZhWNv/AEq9v4nXw9SxZH9Lb2W5lvXdi04i1cr9ijDl7oJmiHCMmmiqYZypEbSM+fJS5KGnnUFV/qYc2rcW33rgoz5201Zy87yTl9PoaxF+fq1SlF5Ev09jm6nqEpS+jLbrZ0vYE+l58r7u5Jer+xq0nQHJN5NUo7bKuSpXHXUNXD/l5d2trimVPX9Wyyfy458lx7WoY0k9/Frk9zptLpMDjUYtxVbxVHRxaiGOnCONe6hG/wCX9RbEj59i0fxDL61gzp9v+pR2Vv2ftwacceqYv+ZjydvuqpbnvsvUs2R/VJulS2oyZNTKVW/HoZ2NSvIy6hkxyueyS32ZbHqMJpbLi9mehvE27xwdve4pnO1nS8eeMpYp/Lkl4iqfJMWVj+bGUbXkrnK0UqE8U+2W5bWyGNMupSlBo8zrMcoZLPT5qZxOoxS324NcuP6OS948lcEpyaTJlm+2kUYcjjPc78/Hl6nsc2Nxu9y/pcn+IUW6QueSmh+nw/8AdR3r9DHUXl67BjuP29zs6JvHBL+pzMWKUIpXdo24ZtNJnGvRy6kJepfGSM8HHtWxbF34Iq5MlsWMdh0giIZKw1T3CluFKqDwSKV7sLjfARG1XAFXoGgARukiWwNbIlewG27DTBFhb22EQrVC3uSTb2BwUEmy8Eu4i+fJBPOwy2Fretxl6ASV+go/gFAKBWM1QvLryUJO+DnZYOeVQd822lwjfmahVvdnmfijq2DTdN/yVLJmlLttSqthD+PN/FPUFqNdHDg7vkw9XVv7HA7rdlC+ZKbcpScm922WSlR0kcqk5JbskdQ0qTKJzvyKrNz0xWl5b8l2kl3aiCb2bMSe5t6a1LW4o3T7lTM261z9e0hFRhFLijfoNNj+dGc0nTunFPw/YzSh2tJeOWbtK6ic7Xp5d6WsXYowUYq7qMa/kVrVTSV/yMUZ1G34Muq18MUXJzqN9rIuOy+ovGu5OpJ82ZMnV8k8koRT55tv+Z5v/i89Tl+TijLd7KrdblWt6/i6U1+Jxyk3KqRqSp6d/Pqc07Uqa90Ysmnhnb+ZCDXP5Ezk5PjfpvY0tNlW6+o3aXq2LWYPnYV3Y/LfJo2El0mPc5xdL0SoC08sU9m0vY6OkzRzZXjl9Ml68HR1XRsnyHli4ySXCQsWWBocz7Er8cHTwyvk87otRGDlB/vR2sOVON2c602ylRjzysueS0YtRkVP1IuMmVKxFCvAksl5KNShJwuh7Ss08lKlRS82Tw6Q+qyxxQab+omg0efX455MCTxx/NK1sbkRITlKVdzb9EXfiJ40nex4XXfEHUI9Vy4tJmlHHBqP0vZte3kTJ8R9QeNY80pOUY03bbX8DXiz5x7yPUZNtexbHWKXPJ53Q6fVarQR1mOEpQULtOwabqKUmsm3hWYvCzqPTfNjIkptLnY5Wk1scuSr2o6HcmjLarNGMvC45M7x1saWk0DsTQ0czNGjia9JpnpcuLl0jh9Rw7Oka5rHc9PK56UjOvzcGvUw7XujHGS+YkdpXk6+r5R2BCU8eROOzS2d/cee4q2lZOjl7XpcsubTRbTltzZ0YqSkk01Rwfh3qGnxT+XqHScH2ur/AKe56eEVJs416Ofh8GSLaTZ0IJJI4sbhqdjr45ppUyC9UhlyV3vZYt0FNd8B8CJ7j7gRDeCuMt6HbAjADdsd16ACrrYlewVTp0T9CI0LbkZPYDojkvc1EK9xKafI7pPe+BWBApexFbqg+fJBPL2YLJuuCPcoNg7ieBQDKWxTPL2bpblknsZcrv7AYtZqJTl+ZqmjxHWMdz7lu/6nr9dfZtyea1mOMrbVuyw/jzMsahvRlyvdnT1EabVHPyJNs3HOxl5GeyHcEuCuWxufHIvcbujwlk6pgSr8y5OfTvhnovhbQynrY6mUF2xe1rz+xi1vie3tsuHtytNNetjw2S+5fNLJJy9W2JKKRytevmJmm4YHKzyOoy59XkljTT+t9qadJ3yem1TeTBLHdJ8nL0uN6bUdz5LyvUeo+FehaXpvTXmzTjm1OWVycW/fxXH6nzT4s6g9d8RanHLFKEcU2oRkt9v/AAz6LoerQxvszd/Y20tk6dbGH4m6J0rq+P8AEKKxayO8ZRiknz/c7c2PP3z08Dm0emx9NhnjlfzX+aLapfoe6/we0q6h0zrPzYKWLFL6Ku7/AEaPL6b4Y1WWePHLPCELcZPf+32PZdLw5+i6GWDRS+UpNuTh/qZbYk5rVrej4tHrcuaOSouVqL5TOjo+r43D5eR3Ua2a9jgzw9Q1eacu/uc3cu+XBqWkjpsMm5LudXRi125jnZM0fxspKNfV5Ozp39Caa/Q4mVReZtLydrS/8lbLg510jRKVmLPLk1t7GLUprczGqwNt6hUdmWpSxLZcHMVXZpilkVGmcV5XhzTvL+Vc88fuet6biwY+lZsGlywxLJhaXbktpuvR+7PJ5NMmmk62oGmw5sGS8U2r2aTr0N81z7j5xDHm6P1TKtXKE8iyNqW++/uVdX18NXnllSSpUtr9PQ+k63o+DqUf/c4oyl29vd5/kYF8L9N0sXHHgU6Srvp/fwb1y8PbrfBsc/Sei4lmSjl7bjzaVu93/Y5HWtEtXrp6qOTtbf5d6f8AE6WTLnlFR4SVJJUqMrw5ZPfgxenScYwdOShNR5aXk7UfqRkx6RRn3KuDVjTTOddIs7aQVEdO1uHjwRcZ82P6Xsjia7FafHB3srbTOXq4v0RqfU6+PF6/G1wceLrLbPQdUSUmeemqmztHj7ntu2pEdNCRtwX2Gj7l6Tkccuya8P1Vf2PedG12N6LEuZST5kttzw0cXc7TOx0uOKM/8/X6fTRrnKpv9Kin9zlY7cV6t9s8iyLyjfp3dI5WDJCcPpnHJHxON1L3VnR0k1+lGWnQWyRbGvJnjJMvT2RA7SvZDV9JWmMpbbhRilRNr4Amhk0luERxVLYldoV9RGttwqV5JZPT0JsRGqtgJbsZMEm/BUK3zt4FteRqfkDiyiJhsWvuTegBe4bBdB7giXsB1RJcC2RSTdIzTkkm2y7IzFlk22ioxZ8ndexwdSrm1X7HoMkYpXXkwZsEJSbS3CvG66MovZHKk3bPV9U08Y+DzmeKVqjcY6ZkxMkX6FsYU0XzUOxep0/jlinS6T8RJLi3zt/Y950bDi02mjDHF7ct+p5jpWNSyxdbWe10qxwxxUV5Od+O/wCcbYJpJPYkkNGWw2z8HJ6GWULYq0SlO/Bt7E1wNFV4Eox/gF3JprbcZ6eae+5sVWWWqo1OksJh03ak1S88Fko1aLIz2oZJNW2a1jGeWX5SbaRzdRnnmyUtkbNVV1sZFj3uiWt8xmljp7nX0zSxJbcHMmk57+p0MLSgjFbxok9+DHqZGu9uDJqOGDGdLu4Q8W4NITFJNlzj5pFKvgu8048L9DHhk4s62HLBx8FjnYXsjHlFc4wb48FmSpcFTi6NWsxVPHD0RTKCbf2L2VujDpFHy6F7EmXtCNbkCrYa9gNUC9iKSdNmDPGzZJ09zLkavnYs+n8eZ6vpqTaS4Z4/Lamz3HU5NtrxR4zWRSzM7x4/1aNO7x/ZAnNcD9PSnCcfRFOaPbka9zdnpxlX4p0b4KLSbSdryjlwdI2YcvCZzx25uPTdP1EVjjDbZeDsaPMk/ajymklvt6Hb0jez81sZsdJdemgrSdeC/HzTMGl1CilF2bU1dow0ulFB7VRX3odNVQKCSsLSZLVhVUiIaKaCyLgDZVF1QNvQnId/QIvjKvBG7ZEtvJKdlQ3cg3sK3QrnsA3crA2mLd7k8ATuoKaYvKIgG8CN7eg9qhJ7AZ8jMWR02bJvYyZaAw6jJt7mJZ6fJp1cWo3bODkzOEnyFUdSzOTd3R57PNOTo6uu1CyJ7fxOLkNRjojlXBO7uqwUSWySOjl/XoOkRj8pNep6fRyuCT9TyPRp/T2+56jSTqK+5jt34deLr0L4cGXE+6jZCLpHDXoMlsH9R1HYnaJQqW46SGUURx32ZZVwHLtYs5OQyg35J2Oi6k5ZMkWyp7RZrlHkyZfpsrUjLfdM6OH8qMeOPdK0b8cNgp/HJnywtM19jrgoyxpMiOcl2z5NcGnGjJlVTvYvxTSjvQK1RgmrRZTjug4F3R2rcv8Al7cCekquOauUWLNGSEliV7AWOkPKp4hJp2VNblvYNGC8k1cU0BwsvcUmBxoJihx2Kp7Ki+WxRk4KM2R1dmWaTNGV88GPI6Xgf1P44vV7jweN1Tbys9h1Fp8+55HU189+h3nt5P1aenJpyb22F1W+RtFsIfKwqS2tGWcu5nSz05JB7miD4MsdmW99LY5tSuxoMqi6Z6fQKDir8ng8OocJWeu6RqHqY0ml9Nu2jFdea9FCCjumbMM7dMwaeUXS7lXnc3KH+pGHRqcVWwYqo7FEZN+S+D2oIK5GVeRUtxr/AJEDEb2tkStfoB+hVFX4GoVIIRqYVTRKD4KhZIraosd+oJb7X4ARNUHYHbXJGBFQKC/0F71v9gGRXOaugSnsZ5zrdgHLNKJz8mRN7MbLqIt0znarUdiuKQDa3Ilhf1JPweczzTvc0ajXPJBRkuLONnzyRYaz6qaT5MEnfBdkffdlElXk1GOgsSckNRXkNObq9JyVPk9VpZtpL3PH9L2yLZHrdHwiWenT867mDxxybo+NjHpl9JqT4OL1Rojb4qi1RKYt0vuXQ35I0ZR+wXEZKlsSttwpEqZKsdRsdRVDDWacKTfKOPqMn+Y1Xk7+ZduGTODkx982zUNHT05HX0mJ5JqKq2cRKcHsdfR5pRppruRUtdjPofl4e+47co4uoXK2Oln6hkyYXGVe5yNRP9iVOWHLjbfCK5OUF4N8cTkivNgfY3Qarf0qUckG2la2Ojkgl43OF0p/LyzTSpnceVSoMqXj814FcEaklJCvEr4GGsk4OtmVRg1J2zZOFcIplsTF0El59BJUOt9xJr2AqkZstepfPbwZslb7BKyZdjFmklybcqTTOVqZtbIsjFcjqk0k/seVyPuy3+h6LqHfkdVb8I4mbSzxzTa53O3Dzfo058kXhUV4SMVpglJi2dbXEzaArbByhoLc5VqH7aVm3QZMnzaj/wBPj9TPJLsY3T9VHBqVKVvxSM2Ny+30PpGlyOClJS3VqzrwjJKnZh6Jq1m08Eu6+2+fB1JSV3vuc67q4xpl8CtU3sWwiA6Xmgv24CqUWiKmQRJ2HsIhvYBUqYbZKJS9So2J2iMCCEChWh3wBvYorYlruDJuxWne1ACT25oqT3q7HmnXgoeRR55Avq0ZNVUaVjyyS7bXFHE12qywyK1tQG6ekjLE8ndVK/uea1WdpuLTOktXkliSb2rg5eqz4WrtXv4KOTmk7sxZJJp2y7U54yX0s5/1PllxnQm1ZVJWPNA2SNyM1W9iqUXKRdKmWYoRe7Nxzq7QQcZps9VobaS5PN6dJTSR6TpjTpGe3T867mCaW1bG2E06MEFT8GrF4dHCvVG2DTLkZoNF8WiNrL3LEVJr1LFJeBFWQjbGm+0WM6RXPI2VlVqcz+W40c/DFOTNmb6osxQ+iZWsc7rnUYaCMIRjH5k3SsPQ+rTzqay40mnXk1dW6Xh6lp18yMe+LtTSVrn2MOm6fHTStSt3fC/sEx3fm9z34s4vWdTnhHt03Ym2rb9PTg3YnS39SjPgWWfHLCZXN0PxXnwahYNZgU4TdRnCO63XoepcoZMKa4aumjzeXoeLPqFkn9NVXalymdaTcIOMfP8AAjWLcMUsjcTdF00c/Rq27R0I8BK24ckfOxtnGDjtRxlNp+xrx5XJeSs4fIqbMs43e3g0Nt3exVLcis9UJJl0kiicdwKMr2Ms3Zoyx5+xQ1QGfIrjwcbVbSZ2sqqNnB1mRfMe5eWOmbS4seXWRjN1Hz6j/EWhgoYsmDHUe19zbXo+P4GjpGgya3VuUJJKC7nuuAfFeHJpI48dv6k73XO525uOHU9PC5pJZJJcWItxs8f8yX3JCNI04GS2DHZkSIrsxWoM5vgXFh+blSjyyS2V0WaTFOeaMod30yV9pmtT69Z0bNqtLnh3PJGKhTVc8/w4Pa9/dFbvdeTzuonCEMc5cqC55O7o383TwmnaozY7xrxRLU0hYxpc7kat8mVWKmMvcSC82WVfkjIrYFqqJW3IP1Ko2rBZGDYI2+bJYUq3sjdhAbF54HddvuJLYAV7iS/MWNCNWAtWZ9RgTj3J/oaaaJ3JsQcR6nstNNfc52tzLOlwqOzrtJLK12tI4eq0WaDSSb90UcbW6zJgg1Dymeanq8sn9U7aPVdY6dnwdOlqpRl2cXR427mzUZ6MpNPdheWiOOxVJGmbUnluWwqbYGtyeCxm1auCzHJLYpTpbj4Ep5Urous5tdjp2KM7lJHX0DjHUxilyzHj0stNgXlvZe4mHV/JzRk067uSV25mPYxq1XlWaIOjFoMsc+lhkTXhfwNkVucq9EaIv7FqopjwWRWxltYn6FsKaKoKixOiKtaQk9kH5iSKZybBFU5WzPkxWy9oH6F1rGXtmnV7FkcNl/anzyW4sd1t5KihaZDx06UeDV2UBx2CRinhbAsK8mtw+krcCVqlhDs4NESpR9yyOyDNW9qf9x1a43ETHT2Kh3Irb3foS9xW0AsiuRZsVz5CKJozZNmapmeauwjJqHWJ/Y8zqPqyPfk9BrZVCS8tHm8sck86hDmWyReWOnf+HH+H+ZJPeUa3f/c43xxq82XXYt2o9jtXs93Xk7+TpuTQabFunk7bkl4PKdabyZk8m8qrc6uXU9POSj3NtryNiipOjRqVGGPYz6S3lLrji+WGo8Gftps252kqKowT3JVjG43Juv4Hsek6fTabpMFLGpZJbuTir5v0POQxR+Ym1wb8WoyZGsWNSk+EopujFdOY7mRfie3HG0qq1ueu0uGODTYoR7vpiufLOf0vpePTYFPJJ/Nkl9D/ANJ1Iz3oza6GsP7hq+B1FbIhQT9B1XqwdvgKjQQHfqTdcsZxAo2FFK+WHtXqBLYNBGpsF0QG1hEb3BJ7/oRgbAPKIuQJ7hezTQQG+UJSDLbdoHcFVzW+5lmlPIl6GrJNONGOXLd0DXD+PNStN8M48cZJTyydJef90z5riTbXn3PYfHuVylpsUcvdGKTaT4543PIYW1Ler9jXLHa+qVFMqNTi2roz5FTOjFVVuChkR0WM0vg06BOWsxRXmSVXzuvf3KaW5R3NTTvhp7kpL7fXMXS8efTYpTx2m1e73uq87HD6v0aGCUcsFtxz/Q5vw38bZum6f8Fq8eOWK7jJQk2uP/l7DdQ+OHrZwxfKgsSdOXY01/8A6ZNeidR2ul5Pl4FBy2T3pex2Mcro81o8l9sotNPfY7+nlcVujFdea3RVodbfuVxY7ZhtYmMmipMPcRqHbFfqLe4JSVfqFRsAtp7hcko2E06oux5Ixe7MTyxSuxJZo1dmovja6s5xauypZI8GPFlWTayylT3NE4rRLJGiqc4mPJlUXyKtRFx3JWvCtvcrC5pMxwzRaLqtGWby1RyJ0Wd6ObLJ2clmLP3Blucr4FsrU0Tu+5FWN78CS5CnfBKKyqkrRnybX9jRPgzz4ZUcrXcX4OPg1ul0etWXPKlBN/f25R2dXHv7l7HgevSgtY4Rkm4/2NyOX6dY+haz4k6Vm07eLL3tx7k+3j2/geM6lr8WozJ42/e1R5lLub2W5owuSlcmbkcL3rXql3Y0Tp+P6m2DLLuVBwtwj6FxLTyi8uqWOLXdJ0rdF2PEns2jHBOU23zvX9DXGag6vbwCJ2PvpHW+GtM11ZzyOoqLpVyzBgj3zt8HcwKMILt5rlGOo6cvSLUS+bUXSfsaoydrc4mizSk93bOrhm73ZzdW5Nlik65YmP6uS1UgyMX7jJ2uQfYNX5IA15sL24fgleANeoDfqS/cG1EtFGvhCDOuRW1uyoST3BvYbt0GX08EAryS/UjZH/QqFk7E33GZW3QUsla4MmRNP0LpzaMWozSjJPZ14IPK/Gemjhx4Mzk2pKl7c+542E0pfqfRviPH/wAR6LLAku6NyVc+fc+au1Jp3adOzXLPTpQyJ4zHldyZMc9hZHRzpFYy5AkCVrgsZOlZVLHubdHjeQTVYnjnVGsRTDFFq2ynLFRnS4aNCaSM+Zrv/QlmJOnsuhZ3n6bhlKFTUnF+6R6XSNfLivPk8J8NahRzy08pV3JON+vk9rpXVWjn1Hq/K+nWg9i1LdGfG7SL0zk7wz2RW37hk354BRGxuomaWVKRpf5Dn58Ep8OixFmXqWDFHtk1f3fo/b7GHL1Pv7lGqv1ZytdpM3zXW6vmxcWkyLlmm+I6K1ba3rkb8R3f+TNHA9i6OFJe4emQ61Hy+PX1Flrci48+4Hii27FWNXSV/Y1F9C9S3yVvUOy14VXDEeBejC+lUtdLH+X+YJfEerwQl8rHj7vDk3/caWnxtW0J+Cg3tEy5d8s+n6v1HqOolHLU5Um1Daq28nf0ePPFR774XLLtDCOOFY8fa6W/qdBLulbW79TNcLMLFOgp0yykthXElFkHfqMIqqg2lsIzSTVoy5YvhGqT2M2VtKzTLma68GHJkqTqPC5PmWvnLLrMuSX5py/gfQ/iPWrS9KnJO5PxXj/dnzfJNzyNy5OnLzftUj9i2KKovg0xVo7cx5ztOrHw/XsluDJLtgkLp5OMuSVYtlHsYjyfUX5E2rKOzuJWo1Yc6j9zoYuoxSp/qzjQg09yyKad2c66SvoXT9PjlpVnjJONK2a8bTvtdngMHVNZp04488oxaqqT/odrQ/Eerx/MhlanBxpNxSfn0Riusr2eLZV5L43e5h0GaOrxKUZq6txvdGvdediItjsN3KiuLv3DaAsuwN+4LfhgbYErzZCINAak/USb8DSaFe/gqFh7hkrBaTCwIkK3vVDPcDjuBTOaTewlpoOWNbmeWRRsCZWlE5+aUbLM2XZ8HN1GVq9zNrUizLkSTrmmv4M8T1bpy/EvLB7O2z0mTUc72crVpzRny9tXnY8+sXaiuUDbOG9UZ5KtjtzdcOucUwW9Fixd3giW6NUI1Hg6yORtJWF7g1s1klaKp5KdIolld7m2akofTZmnjtm+FTxMxTfbKiWJB0eX5GqxScHOprb/AGj6dpMcZaeGWKqL5SvZ/wC2fKZq2ew+DOozyXoMtSSl3Qd7u6OXU12/O56e2xyX2L4vb9TLCopWqZoj6HKx6+ase5O1kYysy3pa2Kcq9i+XBS97LFczU4bTd+eDEoTg+HR2pQt7kWnxzpNFb5uOTGe5q0+D8RdOkaZ9NhH6ot2ItLlwq4N8iOvP6h/wrLlfbjlvwbtH8EajUpz1WtWNWnGMYKT/AISMENTr9PPvxylF3ey5NM/iT4hnBx/EqG6pxi72v/5G45999X4v6j0LH06Erz9z7mknGv6nDyJptL+B0Jx1uvySy6jNkySlbuUuOR1oVW9t/cWxrnuye3Khppz3p7mzFpq5RvhiUFVDNK9kc9S96TFBR9TVH7lUYr3LFsSuX1ZQrW9BTv1J5AjQrQzf3Ek9yxm0s3SMmaTf03u9i7Lkr1OZ1LWQ0mnyZ8l9qWy4tm+Yx1cjynxf1KGRQ0Me6Vbyfc6dHlIx7pUv0NGs1E9ZrMmaT/M9l6GvDoXGKyN7pcHbnnXj761hWOpGzAknu9inK6k0kHHa3Z0kxzW513vYiw1CwxanGvJYn2x3FWGhK4VbJ29u6ZIvaxfm26OddIPnkshFvgpkmNim4zOdalW9jU1Z0tNGMpcrZfuY95mvR4n3bszW+XWw5p6f6otrbwd/p3UJ6lRi3vW5xJ6Jy0rlGW6R0Ph1yxvJDI09ttjLo78brkdce5WpW+R1JoIZJk/sHdkvYAXS5J3e4HbXsDt/+QRokxrtCy5IVB7N7ZJqv2I23RJJtUBEk1dA8k3Sol+oCzj3JnO1OJ06Oi3RVkj3LjYaPO53KLal6GHM7R6HPpozXC4ObqtB2xtNGem+a4WRb8mbKk1TNWqThIxTlaOX9dZZjFmgkc+dNujo5t7OZlXbLk78OH6WB/qRr2WPd+DLB7hy5Wo0d489UTl9XJRN78lkmVSNVhs0s7i0VZ41LgbT/TG2TI+52y/xnWVo0dM1sun9S0+oi2lGa7q8qyiXBXuntyYrcuPrGmz49Tix5sM3kjJW/b1NnfJZEmfOfhfqq0XUMenyKbxZp091Sv8A8H0eXb9LjxL8re1nLqPXx3saFOkGOVdyszxlcbbGil/E5V0lX5HatMovwOv1Eku7jYNwOR4rcrSaZdBb8DWjpOhuUHtsaEdxpFThbD8tNGjtTCoeaNaqiKcdhu1lrhQK2JWbVDh9wdtF3aLJEFf7hXuRoKZA8QPZi9zRHIsSjYje7A5FMptRbs3GdDIrlS8nhPjLqvz9Wun4+7sgotz4v2PQdQ184xyY4tqVbbfb2PDdQjPJqH3u5OtzfLj+vXpk0sU5qUuDfqNS0qT2qgYMChjX2M2qVNHfn1HkpcKWXMlbOjqcEMWH3o5eGXY7L82plOFXsXRVHJ2y5LZZe6NGJvfkdS2W5nVdDHNKNWUTl2y2K4z9yS3RKsq/HlukzTHtTTaOfGfbI1Y5KVMxY3HUxRTSZtxqKX0yV0ZsaUsKitmNiwThK3KznXWO9pMs3jpv6aOroYJTcqS2OPo8jcEmj0Gl7fl7fsZaaE2mXRn7lClfBbH9CItUrYZMRSphctiqF0Tv9hWwWBuq3uRquUHuXoCT3KyNJ+APZ8B9AyogRxsWq9B7QrAWXHBW3syxtdpSnyBTPy1Rz9XmqLVHUkk4HK16ik9/BOiV57VyUpMwSSo36mP1GKdU0c8dJWHM0kzl5/qmdTPTi0c2eNts6cVjuKorcXMmkWqFMTUcI7xwsZmxbVojdImGDy5VH1ZrWLGzHCsViSVo1auCxY4wXNGRp9uxusYzS5YtWWyXli0TNVXvGSd01uvue3+G/iKWX5Ok1knJqVRbbqr+x4qasWD+XkjOvqi7TM9R046fYpScXX82PHJ9KPJfCvxLiztaDWqUMndcJ2qlxseq2SXa4tVynZw6nt6uOlqkDuS8lSmiKXctkZx1XKmy+PoZYM049+SLq5Rf8SyKp7iQ+xahFPCJYoqqDCNodQo1GbVUooqao0SSXkpk0KmqhZUO+LKZz2MqVsFlcp2xHkXqMNWSkvUVSryVSyJrkT5tGsRdOfbFt7HK6hrfk4pOMrb4SH1vUFjhJxbcq4OO4y1s7XnyzUYoY8ctU5ZG265s4WuUZ62SiqS2Payxww6VwSS+mtkeS1GJfipUt7N8uXcZ3jaRztY6aOzNPtOVrovtvyddcLGFMEpBjBtCyVBkr5DYAmVMnuOm2VodAgvkvxZOyrKUrHjHcy1K6uDM21TOnp87xZYzyNuKXhHD030yTOos1qq2ozY689PV6fJo9ZFfIdyrdVTNeOU8b7Tz2jfysay4nUvY6ul6hLLkcMvanVp/0MOjsY3f3Lop+pkwzbj9LTS4ZrUnJEQ1PbcZWIrGb2oKjcV5F70BihNdKqI0Ne5JUlbRUJfsRv09CWmK5U6AlgdeordsFgDI1RWpRUR5bpmaU+24tbMBlnx7pyS87sx62EZr6Wr9LKNZoe9SnCSTa82eN61HX48tRlleO0rjv77bExZcdbVJRTOXOS7tzmafS67PUljyUue5V/Q1fKljVS29iY1pcrttGeUC6QtWzfOMdVS4GLP+Z0dLLjbj9JzMmOadM6641mnGzb07B9fe+ChY22dbDj+VplXJuRzZtdP5mSNcLYSSSgvUSdubt+RckttmVFGUVKwze5Zhh3cCCiSYrVo0Zo9rKGhZp8aenwnDUQywbUou01s1+qPXdO61m+ZjxZ5zlBqm3K3wvVnlukPu1kMTdRk6bPQa3QfKnGWOq9Tl1y7/AJ9PSQ1CyN03Vj/NS8s83pc0sdK3ydDHn7l+pzx6JXXhmTfJsx5PQ4MM1Lc2YdZHZX5JjWu5CfBYpr1OfHMmuXuWwzRfky1rpQybbMLztcWYo5dtuCPLfBpGuWS/JVKVFSyKuSjJqEuZAaHk25M2XKle5RPVKPmzHm1DycOhiavnnSfO5W8rb5Mfe292TvZcTWiWZR8mXUa1qL7XyuUV5cnJmjB5pNcBNLGOTUZqbbb8nY0mmhgT5bdCaLTfK3bt/wDdG5Y/psIz6muxq2eZ1GCS1cmrps9RlX08nI1EY97kzXLPUcfUS7NjBq4qeFy8nR1sVK6Zzmri4t7UdY4dOdClaKsi3LXGsjQJwaVlc2ZjLgjRKIoodCxj6lsUiLBiixKiKPuM4siw8J9rNmm1cFP/ADL7fY5zdCSm1Fp3wZrUr6Li6c8eCGXG4yhON7NM5uqjJNtbHm+mfEXUOm5O3FlbwNdsscle3se4w/htbgjPDkjOckm4+Y7GK6y6HQ+s3P8AC6hRiv8ATN7JfxO9GTlkuLTXsecz/DmpzaXJqNPKDcV9UHHevvZf0PrKxJ6bPFtRjUZ9y2f3MtPRU+fUjK45fmK0thm9r9ggSFpeob7kKVHUjzdDSaaFvcgEpVwI1b/QZgapgVuKvgDXhDPklbgInQstOs1vjYM00Z8+peKFLjy/QAvRd20pNmPUYNLgbuKk/uNLJ2aeWbJPtglbfJ5nq/W9Hih24ZvJKS/6SjRr9RhjtjVX4POZ8ltlMuorJzHtv+BVPPGSsWGj3peQfMSklaMeXPTZXHNvyXmM3p2e+PZexzs+SLmIszkuSqe/k7SOXVacLhs2tzVmzR+VS9DFCDhDvfBny50/JpgZ5Eimea1sVSm2gLdE0GLc5nW0WKKW7Odhj2u2i96hxezLEWaxx76XoYmth5zcnbdit2ixL9WaHN8jXYZ+k1/v+J9DzxjqNPDJVKSUkfNIyrIt63T/AIn0jp/Zm6RpZRm5fSk2+eDl07cMDw+iJG4UjbLE1tvZVPF5OevRCp2PFVumBY9v1Ck09uA00Q1M0kvcsjqZlKXsWRW3BnFlaoa1w5sb8b3evJmSVDxUVyXDTvVSf5W+RZSnNbsjUVwDvoFpHCfqDtZZ3NitNhKrfFCetl3Y2grE+QjFKLlJJeTXptPV2XY8NyTa8m3Hh5oETFjpFjVKi2MBZcuiKyZYbPg5GuxuEXKjuyT34Zl1mGOTTZG2l2q3+5YnUeOz5Fbs5mfP2yaXkfXajt1M43w6ME7lO7OnNcOoshBznd7FmeC7UiRmowoVXN82dMcmScWvAE/U2TjFp2ZJxabF9CWN3NMqXI1mBrxTTaTNahHtb2ObB7l6m0uR/W4GRVNivdElNC91msZ1XKEk7NGh6nren6yGfT5pLtVOL3TRU8njwI2jnedalsfSOn/4gaLMseHPgcJ0rcYflfHqdLrPQs6xR6lpcacM8e5KLdTXt77cHx+eNSTTSa43PS/DHxxr/hqXyJ44avp7VPFkvbza/Uk5anb3/Rtf8/BHDmioygvzHQlvFtLY84uvdH63BZNG3iyyX1Y8j3/drfj/AMne6Z3PRK94q9/HJMblV3Lu9g/V6ot7e6XAOwiuiuRgcMPhkAW4GmStwN77AKMuOAU2MqUdwKclvZI5vV80MOgmoTj81Lz4/Uz9d6hngni09RvZtHBzaPNPF3ybb+/JZErzur1mXJBwm1273T2LOm9Mw6uP+dP5cE/9K3aPTdF+AM/VYZNXrXkw6dflanFp/dch6v8ACy6Tp5rSZpSpcTZpI4uu6V07S6ZvFln3Ljuldnn8su20jo59PPtvJJtr1ZydRGnsxDpRJ9z5DHG5ukCEXZrwJQkpS8Fjni96WOHTq39TWxXHBcXKT2ofNmWaUYxeyE12dYtOsUfzSNxKy6jVf6I8GRy8A+5ORb7YPGDkWdqihYukBybZr1EXRewsuQd1IXusqfwWTchPBrEVNfX9z6B8NZnk6Njjv9Fp/seAfJ7b4Saj0yaj3X3O0cq7cfXaeO3tZVPG1saornYE4W+DjXqjJDGWxxDdlPgthvtuNaIsVIDxO+Ga1Djd8lix35YGFY3XkPbJ+DesK9yfJ3CMHy5e4Vjb5N/yUT5SXlgrJHE0h1jNSgTsogzfLpBWN0aOz1HhGyCrHje23k1Rj28hhAtjG9wpK8gkvH6ltchhjct1/wCAjm6zJHBjttJnJm55ceTtnH6k07LOs6n8RrVjxuscVTjXn1KNZ+K0XTZ5od3akt6+3/c1ynTxWfp2SGfJ3ST+qzPkx/LYcvUNRLJKWSXdN82Z3OWR7s68vN1TynsCGRxkSGPue7Lp6eMVdmvGsKXLyJJ2M9kIWheGFkasii2ZQ8G7LXshIxUdwylaKuq5S3ApbkbF8iUNJ7ihdEZfRqRdojin5AtmHcek3COL54fquUek6P8AGOs6Xp46fJhxZsMY1+W2zz1MnaYsanWPrHQPivpvVaxzaw5e12u1rffx9kdu1/1I+IaXUy0WqjqIRUpQ/wBLez/3Z63/ANey/wD4WH/9THi6Tt9O23JtTZGSKdMw6I2K+QtewGwFtCzt7IZxVi2k/AkRwNW8fznGX5/UP4KTwdzTqrp7C9UWOOrbgqbVnWhLTvRYscd32LuSbZVTp2rlj0bxyrtirq/+x5/q2o/Haly7tqrtVV/I6U/8rFOtr4TODlj25JNuvIHL12FqLSo87nx/Uzv63O/mOmmq5ONqF5NMVjiqH76REhJo1GLVuna722yjW5Fkmq8BhKtrKMiuRtm1W40i3T6eWaaUUytq0aNJn+Q7Entn+L82jeOCvkxNdsqL8+tnlly69ChvudmrYmUXuiJEGSpFkSpToj2iNaoSTNWyRIXHjllydkV9T4Pa9C0OTR44ueS+7mK/Q8v0vE5auM/ET02nzzWqhHuainvt9jlfjrxfb0UeVRakqK8UbSdMv7DhXqimULfBIxpl3aFw29yNxIotiJBepbFevqFMkGkFIbtImEoEuSxppbC073GhUmR3xuWURRC+lai2+S+EKJGO5fCJELGLstS/YZRC1tsFUSdXuNPI46XJ23bjSZJQp2VZW+ySRUecx4nPUuUnzydXrSjD4c1M2otRitnC/wChn7ezKyfE+aUPgzVSjbk3GKSit+HzXsajPXx8pnTyN1Sb4GpJFcPypPmh5J8nfj48fX0E3fJbFSkt2UPuvgKnNcGtZpsiorSHpy3YrVImxViiq3AqTKnJg3AvbK5PcVOkH7kwLYVyGkB7CQRugJkbQK3KGChQphDk8i2FMuBqT5B2IlhtksNr78q3YPmJAbA4Js8z1BKVvYVui1pLZDLT5Ms6UdgKW0/SwLHLmvB1odEn8l5syeOEVvKWyPP9d+Pvhv4bx5MOLJj12uSXbFRl2p+b29C+NZ82bV9Oy6jM5LHaS3KNY9H0zTfM1mqhi7Y32JOUmv5HiOufHnVOsKa08cOlhK77Yu2rPKSjLLkc805ZJvbuk3/c1OKXuPc9Q+LMOeEloqcHGk5Yzh6nrWozydSUU41sjm49sdCvZmvFjz1qhqJv8zsTNPusrUkkV5Ju9iYWjCdy7S7JiqFoxuTg78mxZ1PDTW9FjNYHak9yO6JJ7kNRKC9wPkerA0aQlDKO5KGRZGbUqgvjYj5IaiVKYs/A+5XPl/Ynacu10PRajV5VDCrbfLkkl/E6v4HUabUxeRJeVUrtE6FCen0MM0U1KS9f1R0MuX5uVSldrY49O/E/rq6SbcIvdepsjTexh0TTxpUb4UjnXoh1FEcBobqizs2X3MukVKPihox3LO3cCQUVEfsYYosUb4Aq7QOBdVcgavggRRrawqLLEkWRxp0BXjg2y9RSYyhtaGhF3ZNAolUyxpXyK1vuBTJW3uUzjV2zU2rKnvL2NI5OXE+5s4/xb2f+mssHJfMlKPanHblc7Hp9XhSxSndJbtnjvjHHLJ0mE4vvhauNe/O69LNcsdX08ClVbVsWrcSPO63ZbDFKX2O/Hx5aKcFvIsjLFJ1sUZIdraK4VGW5qMt/4WWRWlsZcsO3ajYup9mLsilxRjyZfmWxcFD5Fb3I7sBEEIFwE0JZLJsTYqaDV8EphIjIlMnkLYLCoxkLYyCIwWNaZKQV96clY9Nx2TpL0Jj08ss/y37eovxB8UdG+DNI56lx1OvUko4ISjz5T3s88mvResdLRdKz6j61idR5ctl/E5Hxh8Y9O+EdA4aXUYNR1LIqjj2fb/BnyPq3xr17rWty55aqekw5J9ywYmnXHk4k5TzZfm5ZfMy/9cuTc5cr1XW6r8Xdf63kyvU6+WPDkr/JxqK/ioo4kcUYN1FN3dss7He/8wpG/Cs3o2NUgU+66Gi62DtZrGdNGVIDe5AWTpqD3bCSYXwI2c2xdMCb4F3ImajKNOx4rbcRvc6eHSwz6RyUqo1EqnDp++NpWU58Tx8qjVp8qwy7WUa7UKTpI1/EY73HT2K0WIkZokJQTcQW9hcK788ItPeSXAJvY6Xw1pPxnX9PjbpJOVepjq7W+Y9hhw9mgwQrtUYLYRQTao6WXGkpRTtLZfoY8UEpOzl1Xo4jVpo9qRthLZGbEr4Llskc67SNWN2zQtzLhkbIfcy2btQOz2LoxdWMokVUobbDwVItUQqFBFfbaAouy9R2CoWwKoQ35NEYrwRQa9B4oCU0gV4HaArRAiTX2BPbyNORVJ+bAR/coyycb3LsmSME3svU5mo1kcsu2DfNGkYusyzT0soRyyV+iX9jwPV9XrZY1hyZZvFt9LSXH6H05aeOoxds5JX5PDfHXT3op4HGcckJSrbZ8f8Ak1y5d15TFT3ZrhmjGLMCXamRN+p6PzeWrsuTubKGg7gZuxnQCnSAEmLqXsCiUQuIAaIFBLUSC4g3Qe7wArIFihRYAgZMQSWQgBUhrFSG2GNPuvxf8U6b4O6DOEVjydUzSWPHjk2uxOt9l/U+E59RqNZq8ut1mWeTUZZOTnKTbT/c09Y6ln6513VdS1U5ZJTm+zu4UfGxkUbRyk/katNG3/5DW5I7BO0kY0NyIhLKg8AsDZCUHuBbIBvczWoN7hq2BU6Luz6bozi6paA0WS2ZW9yKWStbF+HNLFjcb5KLDyiz0lWSyXv5GjjjlW73Ke1slSi7V2WaiSwuMvYZbFqyd0alyVvk1GagGEl0ikJLg9Z8BaPFLX5tdNy/yoOKVbI8mz6B/h/iw5ukaiHzP82c5fT7KjnXXnm11ckP8x7tmbLhp2rTOllxdmSt3Tp+wHBOLrk516JGfS0opN72aJR2Oe1OGXdvY6WPJHJiVOzm6QuOXa9zdjlaRzpJqSNeF8bkadDG36+S2Kvcox328miLsirF9wte4q5LPACb+oy2YLDs9whlzyOqXkCqrClsBG9+QP8AQNbXYvZJ735ArldleSUYptvb1LMtxUqabOLrIa3UZJQx7JU/q2in7g0mp1qyZPkxalbpJcs6PSOkXn/EZu2X/TGk/Q06Lp2j6fghrNZOHfspTmml+i8nE+Iv8RtL0xvT9JxZJZW/+Y0vQ1OWbtep6jh0eh0qz6uePDTX0u1fHofIvjjruHqetxYtMofKxNLuTvjz9/T/AHWHqnxB1brUpT1upl2vjGuEcScEtlVefc6SOXfqETuPi/YnCAmkw8nbmPLUAEBtmoSgk8BQAEhEgBQAgFgBYS4ajVgoIGRQCRILToIAQBRAUQhKYXCqCpKKSj7Kh6dcBi6XAbtE4haC5IQFm0RgDYAAyEYSYiAfIQCxdDdUdHRQ+d9D9DBWxZptXPTZU09q32MNRo1ukeGV+DFVHZz58epwJpvuo5bjuTF1VVkp+Czs3LIpR54NSJqmLcfBJzTXBfkcK2MzW5fFEQQBLEEVsjBuFBptm/pvVdX0jPHUaSSUo39LSp/7pGHyWxh3Lc5du35yvoPSfjjRdU7MfUsM8OdX9cKS/wC56HHp46iKlppfMtJ7bs+PfJuSN+i6v1TpmSMtHrMmJqSf33Odr1c/Pb6e9C5JqS3fmjkfMy6XUODuKukmjm9P/wARNVpVF6/H+Jbf1fRxxxvydN/FPQ+p6dZe6WLN5jOKTX62Zxc/6aYZVl3Ts2YHx7nK0Ot6dmS/99ijLu7e1s72lh0+b/8AuGmvu7a7+TKr8T2L4Mvw6LDkl249Vp5tOv8AmL+5tj01tJxlilbq1NVfoXE1z1wNbfk6a6Xkp/SqXNSRP+HPw8fv9a/uPGnk5dP/AGhlwzpT6fCDXfn00O7juzRV/wARfwemVKeu0Ud63zx/uXwqecYYpvgsimlumXy1PSNHCT1HU9IlF/V25Iyr+PscjWfG/wALaOf1aueTf/RCL8P0kvRDxN/8dL5Mv3G1Wow9N0/zs7VRfFrfa/6Hj9d/irpINrpeK+3JtKWDlf8A7s8h1X4y6v1mUo55wjictlFNbb+/uTFk329Pn+NsMuodksLjp+6k1vW/ND9Q/wAR9J06P/03RLNm7lUpx49a3r3Pnsu7JHdtNlccVehZMbzZ8bupdd6h1zLKerkoxcu5Qikkv2MPyrd1V7l2OKSqgyrwaan55PaqSUY7GPI7kzXldRMM3cmdOHm/eyQCeSAb3O0eLTEFVhKlQgAkAYBgUAEElEBUonCJRHwBAB5IBEHlAJZAaI0SwmVRBBYLAe1QCLiwM1yiMXcJCiACSwAFEIACEIAUK4ptBIzNmkpoycVs2Dvd7gATxXViybEc78lbRPBQbsgAo0ggDsQAeADeANEWJFWzTBbFEOdjRHgx09P5CthnvWwFyHwcrHqzS/LtEWNLjlcDrgJlfFS8btbtU+U6IlKHE5ppbOM36mhccBpehDwqqGp1mHbDrNTB3yssv355LsXVur4ZqUepap1K0nmnV3y9+SKvQNL0Gng0Q+JOv44VHqupr0+bLzz5KP8Ai3V5STfUtV+Zy2yz58eRaXoMoqh7X/NM+r6hqYxU9bqElbSWWXr62Utaif8AzNXqZPm3nm3/ADL0GmX2v+UZvlZH/wDlzP75ZO/4+43yO5fUm2/Lb/v9zQm0hlLbcNT84zx06u3yWrGkFNthLjU5kR16Ar2CluR8kXAFocWTosL8Z8/5TC/zGzPK0Y3uzrw+d/yEsBKCjrHkFIjRLBZRCeCEIVCBABCeSE8gQHkJAiAIyBYhAohDUJ4IB2QS6AQgaWsVkbAaZEHkZcAsAAYQPkAJ7E3CuA7EAVhDdAsCEohAgE2J5JW4AfJBqAFCghAUQi5CFJeWwIBhQHyS/Ce6bGqZfEqgi1NWceq9v5QyGAqZGjLuYgESyNQyY1iLcZLYzW4ZBAhluGvQLkamDyNapBdidoaJaJ3BRSG7RVNIHeioZRDSK3k9wd/kumreAN0VKbbfoVyyU6bJS2Ro7irI+StZqrdb8All7434HLHXcxRlkUeR8krkIzvxHzP162oyEolHRxQhCFEIQlMgDJuNRKYNhSDdrJ2sqUu4UHtYe1+gw0tEphadgUWxghKD2MKhsTDS8BSsLSGikTFVtNMBc+31F+n1FCPkFbhJQiBZLDQGFgWQiRAJYQeQgwSABe4BJYrbB3MBwiKTrgZMIIAvkBVEgAgQJEiMqA2C0FiNbk6an1og1SLFRZ03Rx1Slc0mvUScOzK4Lw6OHT2fnTR2YWRBaMPQCAM1sKRqYKsa2SFNDduxGkW4UUyydroeE7CSrANDXWwLDehv6gb9xtijNkUWEtxYnfkdIoi5JJ9rp8F0HcdwIwLfYLVkiqKQ3a0rMuXtlkUZOle9Gru5RmyRt3f8DNTv47nVOmaLB0rDl0uZPLa7n33tu+Dz8047N8bFkHP5bgn9PoVZNi8y68/6eopZCXsQ9UeHq7RIAO5pmowcBA+SoiY1iJOw+AlhlP2B3gRKGkg94PmteCUCie1uD81+gXl9haA0PaejLJvwN8z0RWkEvtMM8jfgHcwUQLkB2S36kdg45Jqo2/UFsnJKZgWEsBDYlgu2QlOxgNEoZcAYA2J4AQgnKIkEgEYu41MFARIKW5AoIPgFbBA+CqhABKhkAFhCgxGr2GZFyS+yLNPknh7lGTVosj3OTb3bZVFF8Nzj1zXq/G6dWN7EUaD4OdseyT0GGHzs8MSdOTo19Q6c9Io9srTW79zFjbxZ45VzF2jVquoZdXFRyPj2Ic/FEKUedyzb1KYosa+mg3PjX03p2m12o7c00qV1srE6jo4aTVqGN3Gr3MkHLHNSi6afJZOc80++cnJvywTMRJfqQItEWQUIowWZSmu6KabQ62Fkkxi2Ozr+o6TN0+OLBGLl6KNUcmFUVwh2stWwkIjFsLF8FQRe1sHcNGVA/hX9CMuZ2zRmn9Jjk22b4jyfvfQEIkGj0R4URGRAfIRCEIUFE8ERLIgB3ImGygUB8jWSwFolDWK+QoUSgkCQCECRQA1YathUfUYFSoI9InaQIEgSgUSgkKagGH9QEQKJQSBUQGEDCUQBICoRECgJwBkZAqBATwBPJCJEKIwJBDGiBkWQluV8D41b9zHbt+N9tMWFixG5VHnr6HN9Ek0kLUkk3FpP2LcHZHUweVvsv6uf7nb6pm0+Xp0Y4uxu9muaGNTnY4UZJosVUVIaLcpKK3b8BTNbjbUVTbjPtez5LIy2CxPsDyEjdUDUA0xrI+AoILYEDkGo3YYY55X2w3foI15H0uslpcqkop7hm9ZSTwzxupppkhG0X59Q9RkcqoTuUYmpDr1GTNtsZy7LLukyp8nXmPnft1tQhPQh0edABsllAIQADJqgMhK2Am5LZCACw7kpECVLITYOwUCEZCmIQKWxCBbph3ZH9gkRFY1MCaD3EUhCELEEDIBlUUH9SEADIRk8ERABABCEIUEF7kB5IpiAQSgoBPBACS9gECANEC5GSGFM3sIsklPYerpCfkyKXlGe/jX59e3RzafNiwQyOLSasqg2+TTPq2TU6eGGUVsqbozpUzzdTH0vzoyx207S9SyLago+Adyqgd6Rm13mQXv4LdBlxabXwy5bcV4SsqTsDSuxpW7qeq0muywlhi4tKm2qsyqKSKlCnaLEykCe0TRoelarXxlKEPoW3c/Uy5F3RdGrp/VtVoIuEclx8JpVx9gW5fap45YsjxzVOLpoSW2zGlnyZcjyTdye7K5S2CWmTVOypzSfNL3Dgy4/xMI5mlBvds6vV9HosOjxzwSgsnpB33IjO+nNVS4YHjRTjnXJd3WtinN36FduxXknsyxmfK+S8sfp1kUt2KybkPRzHzu+toxk4tP38hlLuk3t+gpDbFQgQBEIQhACXsGg0FAlkpEpFEIGieQlCtwkAFS9yEogBIQlgQAWAJRIQFoijQGmMmAJAoNEJ4KoEIQIhCeSMKhCEImIQhAYBA3sAKgUAISoEBCqgGwgfJNMRbsdiRTssLENjruXc6V77BlTboVD1sWzVnqjjpbl8dzPFl0HsefuPf8Ah3/DSaRpxdM1WbD+IhjcoeN16X/QyTi57JmrS9X1el034eGT6Vxtx/uzlMej7VPY4unsGgKbm23yxuC2NwV9wS2FlLwuQ/IyvC8r/Kt27MkvsFIlICGQX1QoDW4wNwXFWTF3U/TwCClPtxt1G9i9VRXKO+2xKx4f109doNPg0MMmOTeRc77M5qtIaMptJSk3FeGK/pTNSaWeglOkZck7k0WzkZ3u7OnPLx/t3npKIBOiHePJiMhGQqCBsDAA1kAkGglSw2AhFQiIQAgCAohCBXIEIQKKBdEqyNB4IA0AL3AwJ4ABgM2q/9k=
Ε-mail: kontoni (at) uop (dot) gr
Τηλέφωνο: 2610-369-031
Γραφείο: Κτήριο Πολιτικών Μηχανικών, 1ος όροφος
Ώρες Γραφείου: https://eclass.uop.gr/modules/announcements/?course=CIVIL110 (Βλέπετε ΑΝΑΚΟΙΝΩΣΕΙΣ ανωτέρω ιστοσελίδας) - (Συνιστάται πρότερη επικοινωνία μέσω e-mail: kontoni@uop.gr)
Σύντομο Βιογραφικό ΣημείωμαΠανεπιστήμιο Πελοποννήσου  Σχολή Μηχανικών Τμήμα Πολιτικών Μηχανικών Μ. Αλεξάνδρου 1, Κουκούλι, 26334 Πάτρα, Ελλάδα. Ιστότοπος: https://www.uop.gr , https://civil.uop.gr   Δρ. Διονυσία-Πηνελόπη Ν. Κοντονή Αναπληρώτριά Καθηγήτρια E-mail: kontoni@uop.gr  Skype: kontonid  https://www.uop.gr/staff-member/kontoni https://civil.uop.gr/staff-member/kontoni https://eclass.uop.gr/modules/document/?course=CIVIL110  https://gr.linkedin.com/in/denise-penelope-kontoni-b2906919 https://www.researchgate.net/profile/Denise_Penelope_Kontoni https://orcid.org/0000-0003-4844-1094 https://www.scopus.com/authid/detail.uri?authorId=36965453100 ‪https://scholar.google.com/citations?user=BZcMZJsAAAAJ&hl=el   ΣΥΝΤΟΜΟ ΒΙΟΓΡΑΦΙΚΟ H Αναπλ. Καθηγήτρια Δρ. Διονυσία-Πηνελόπη Ν. Κοντονή  γεννήθηκε στην Ελλάδα και έχει ελληνική υπηκοότητα. [Full name in English: Denise-Penelope N. Kontoni (Dionysia-Pinelopi N. Kontoni), Father’s first-name initial: N.] Έλαβε το Δίπλωμα Πολιτικού Μηχανικού από το Πανεπιστήμιο Πατρών, Ελλάδα (Βαθμός Διπλώματος:άριστα, κατάταξη 1η). Έλαβε το Διδακτορικό Δίπλωμα της στη Δυναμική των Κατασκευών (Διδάκτωρ Πολιτικός Μηχανικός) από το Πανεπιστήμιο Πατρών, Ελλάδα (Βαθμός:άριστα, Τίτλος Διδακτορικής Διατριβής: «Δυναμική Ελαστοπλαστική Ανάλυση με τη Μέθοδο των Συνοριακών Στοιχείων»). Από 21-10-1998 ήταν Επίκουρη Καθηγήτρια και από 01-03-2002 έως 06-05-2019 Αναπληρώτρια Καθηγήτρια στο Τμήμα Πολιτικών Μηχανικών του Τεχνολογικού Εκπαιδευτικού Ιδρύματος Δυτικής Ελλάδας. Έχει διατελέσει και Πρόεδρος αυτού του Τμήματος. Από 07-05-2019, είναι Αναπληρώτρια Καθηγήτρια στο Τμήμα Πολιτικών Μηχανικών του «Πανεπιστήμιου Πελοποννήσου», Ελλάδα, με ειδίκευση σε: Δυναμική Ανάλυση Κατασκευών & Σεισμική Μηχανική, Μέθοδος Πεπερασμένων Στοιχείων, Μέθοδος Συνοριακών Στοιχείων, Ανάλυση Κατασκευών με Η/Υ, και Προγραμματισμός Η/Υ και Υπολογιστικές Εφαρμογές Πολιτικού Μηχανικού. Είναι επίσης Συντονίστρια του Τμήματος για το πρόγραμμα Erasmus+. Επίσης, διδάσκει επί 21 χρόνια σε Μεταπτυχιακά Προγράμματα Σπουδών του «Ελληνικού Ανοικτού Πανεπιστημίου», όπου και επιβλέπει Μεταπτυχιακές Διπλωματικές Εργασίες (ΜΔΕ). Έχει επιβλέψει με επιτυχία πολλές ΜΔΕ στα Μεταπτυχιακά Προγράμματα: «Σεισμική Μηχανική και Αντισεισμικές Κατασκευές», «Διαχείριση Τεχνικών Έργων» κ.λπ.  Επίσης, διδάσκει επί 3 χρόνια στο Πρόγραμμα Μεταπτυχιακών Σπουδών με τίτλο «Προστασία Κατασκευών από Φυσικές Καταστροφές» του Τμήματος Πολιτικών Μηχανικών του Πανεπιστήμιου Πελοποννήσου. Έχει διατελέσει και επίσης είναι μέλος συμβουλευτικών και εξεταστικών επιτροπών πολλών ΜΔΕ και Διδακτορικών Διατριβών. Επιβλέπει Διδακτορικές Διατριβές στο Τμήμα Πολιτικών Μηχανικών. Είναι συγγραφέας διακοσίων (200) επιστημονικών άρθρων σε Διεθνή Επιστημονικά Περιοδικά με κριτές και σε Πρακτικά Διεθνών Συνεδρίων καθώς και σε Κεφάλαια Διεθνών Βιβλίων, τα οποία έχουν λάβει περισσότερες από 1110 Αναφορές (Citations) (Google Scholar).  Ήταν η Επιστημονικός Υπεύθυνος ενός χρηματοδοτούμενου ερευνητικού προγράμματος και μέλος ερευνητικών ομάδων για άλλα αναπτυξιακά / ερευνητικά έργα. Είναι κριτής / αξιολογήτρια (reviewer) σε πολλά διεθνή επιστημονικά περιοδικά (π.χ. CertificateofOutstandingContributioninReviewing” από “EngineeringStructures” - Elsevier), και έχει επίσης διατελέσει μέλος της Επιστημονικής Επιτροπής πολλών Διεθνών Συνεδρίων. Είναι ακαδημαϊκή επιμελήτρια (editor) και επισκέπτης ακαδημαϊκή επιμελήτρια(guesteditor) σε διεθνή επιστημονικά περιοδικά με κριτές. Τα ερευνητικά της ενδιαφέροντα εστιάζονται σε: Δυναμική Ανάλυση Κατασκευών, Σεισμική Μηχανική, Μέθοδος Πεπερασμένων Στοιχείων (FEM), Μέθοδος Συνοριακών Στοιχείων (BEM), Αλληλεπίδραση Εδάφους-Κατασκευής, Έλεγχος Ταλαντώσεων Κατασκευών, Ανάλυση Κατασκευών με Η/Υ, Ελαστοδυναμική, Ελαστοπλαστικότητα, Εφαρμογές Τεχνητής Νοημοσύνης στην Επιστήμη του Πολιτικού Μηχανικού, Προγραμματισμός Η/Υ σε Εφαρμογές Πολιτικού Μηχανικού, κ.λπ. Ξένες Γλώσσες: Ελληνικά (μητρική γλώσσα), Αγγλικά (άπταιστα), Γερμανικά (πολύ καλά), Περσικά (βασικά), Αραβικά (στοιχειωδώς). Διδάσκει τα παρακάτω μαθήματα:Προπτυχιακά Μαθήματα:Προγραμματισμός Η/Υ και Υπολογιστικές Εφαρμογές Πολιτικού Μηχανικού Ι (Θεωρία – 3ο Εξάμηνο). Προγραμματισμός Η/Υ και Υπολογιστικές Εφαρμογές Πολιτικού Μηχανικού ΙΙ (Θεωρία – 4ο Εξάμηνο). Δυναμική Ανάλυση Κατασκευών (Θεωρία – 6ο Εξάμηνο). Ανάλυση Κατασκευών με Η/Υ (Θεωρία – 7ο Εξάμηνο). Προχωρημένα Θέματα Πεπερασμένων Στοιχείων και Συνοριακών Στοιχείων (Θεωρία – 10ο Εξάμηνο). Μεταπτυχιακά Μαθήματα:Ανάλυση Κατασκευών με Σύγχρονες Μεθόδους (Θεωρία). Προσομοίωση και Δυναμική Ανάλυση Κατασκευών με τη Μέθοδο των Πεπερασμένων Στοιχείων (Θεωρία). 
Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής στα Έργα Υποδομής [ ΦΕΚ 184/Ν.Π.Δ.Δ./14-10-1998 ]
Επιστημονικά Ενδιαφέροντα:
Στατική Ανάλυση Κατασκευών.Δυναμική Ανάλυση Κατασκευών.Σεισμική Μηχανική.Υπολογιστικές Μέθοδοι Ανάλυσης Κατασκευών.Μέθοδος Συνοριακών Στοιχείων.Μέθοδος Πεπερασμένων Στοιχείων.Ανάλυση Κατασκευών με Η/Υ.Αλληλεπίδραση Εδάφους-Κατασκευής.Έλεγχος Ταλαντώσεων Κατασκευών.Μείωση Δυναμικής Απόκρισης Κατασκευών με χρήση Σεισμικής Μόνωσης και Αποσβεστήρων Συντονισμένης Μάζας.Υπολογιστικές Μέθοδοι στη Μηχανική των Κατασκευών.Ανάλυση Δομικών και Γεωτεχνικών Κατασκευών.Κατασκευές από Οπλισμένο Σκυρόδεμα.Κατασκευές με τοιχοπληρώσεις.Μεταλλικές Κατασκευές.Υπολογιστικές Μέθοδοι στη Μηχανική των Υλικών.Ελαστοδυναμική.Ελαστοπλαστικότητα.Εφαρμογές Πληροφορικής στην Επιστήμη του Πολιτικού Μηχανικού.Εφαρμογές Τεχνητής Νοημοσύνης στην Επιστήμη του Πολιτικού Μηχανικού.Τεχνικές Υπολογιστικής Νοημοσύνης.Προγραμματισμός Η/Υ σε Εφαρμογές Πολιτικού Μηχανικού.Βιωσιμότητα Δομικών Υλικών και Κατασκευών.Τεχνολογία Μοντέλων Δομικών Πληροφοριών (BIM).