NUMERICAL ANALYSIS

1. GENERAL

SCHOOL	ENGINEERII	NG			
ACADEMIC UNIT		DEPARTMENT OF CIVIL ENGINEERING			
nemberine on it	DEFAILTIME		OINEENING		
LEVEL OF STUDIES	UNDERGRA	DUATE			
COURSE CODE	40401		SEMESTER	4 th	
COURSE TITLE	NUMERICA	L ANALYSIS			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	mponents of the e credits are aw	e course, e.g. varded for the	WEEKLY TEACHING HOURS		CREDITS
Lectures and laborate	es and laboratory exercises		3 (lectures) (laborator exercises)	y	4
Add rows if necessary. The organisation of methods used are described in detail at (a		the teaching			
COURSE TYPE	General bac	ckground			
general background, special background, specialised general knowledge, skills development					
PREREQUISITE COURSES:	There are no prerequisite courses.However, students			, students	
		sufficient know Programming.	ledge of Mat	hem	atics and
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (in Engl	ish)			
COURSE WEBSITE (URL)	https://ecla	ass.uop.gr/cou	rses/CIVIL115	L	

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course is the basic course in Numerical Analysis. It aims to present the basic methods of numerical solution of algebraic and differential equations, differentiation and integration of functions and data processing and analysis. The knowledge covered is necessary to solve various problems of the Civil Engineer. In the laboratory part of the course, the various numerical methods are implemented by using an appropriate programming language and/or a suitable computing environment.

Upon successful completion of the course, students will be able to:

- Solve various problems using numerical methods.
- Choose the most appropriate numerical method to solve a problem.
- Use appropriate programming language and/or computing environment.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	
	Respect for difference and multiculturalism
Adapting to new situations	
	Respect for the natural environment
Decision-making	Chausing against professional and athing responsibility and
Working independently	Showing social, professional and ethical responsibility and sensitivity to gender issues
working independency	sensitivity to genuer issues
Team work	Criticism and self-criticism
	· · · · · · · , · · · · ,
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others
 Working idependently 	

- Team work
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Production of free, creative and inductive thinking

3. SYLLABUS

- 1. Basic concepts, discretisation, error theory.
- 2. Algebraic equations: Bisection, regula falsi, fixed-point iteration, Newton's method.
- 3. Linear systems: Gauss, LU, Jacobi, Gauss-SeidelandSOR methods.
- 4. Numerical calculation of eigenvalues and eigenvectors.
- 5. Interpolation, approximation, data fitting: Lagrange's and Newton's polynomials, splines, linear regression, least squares.
- 6. Numerical differentiation: Forward, backward and central differences.
- 7. Numerical Integration: Rectangle, trapezoidal and Simpson's rules.
- 8. Numerical solution of ordinary differential equations: (1) Initial value problems: Euler's, Runge-Kutta, multistep and predictor-corrector methods. (2)Boundary value problems:Shootingand finite differences methods.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of appropriate softward Support of the learning pro platform.	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures Laboratory practice	39 12
uescribeu în uetun.	Final exams	3
Lectures, seminars, laboratory practice,	Personal study	46
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Course total	100
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS		
STUDENT PERFORMANCE	1. Written examination th	at includes problem
EVALUATION	solving.	
Description of the evaluation procedure	2. Laboratory examination that includes solving	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation,	exercises on the compu The final grade is 70% of the grade and 30% of the labor	e written examination

other	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

- Ι. Σαρρής, Θ. Καρακασίδης, «Αριθμητικές Μέθοδοι και Εφαρμογές για Μηχανικούς». Εκδόσεις Α. Τζιόλα & Υιοί Α.Ε. (2017).
- 2. Α. Ράπτης, «Εφαρμοσμένη Αριθμητική Ανάλυση». Εκδόσεις: Open Line/Μασκλαβάνος Θεόδωρος (2017).
- Π. Γιαννοπούλου, Α. Δημητριάδης, Σ. Δουκάκης, Χ. Κοίλιας, Ν. Ματζάκος, «Εφαρμοσμένη Αριθμητική Ανάλυση». Εκδόσεις Νέων Τεχνολογιών (2016).
- 4. S. Chapra, R. Canale, «Αριθμητικές Μέθοδοι για Μηχανικούς». Εκδόσεις Α. Τζιόλα & Υιοί Α.Ε. (2018).

STEEL STRUCTURES

1. GENERAL

SCHOOL	ENGINEERII	NG			
ACADEMIC UNIT	CIVIL ENGINEERING				
LEVEL OF STUDIES	UNDERGRA	DUATE			
COURSE CODE	40402		SEMESTER	4 th	
COURSE TITLE	STEEL STRU	CTURES			
INDEPENDENT TEACHIN if credits are awarded for separate cor lectures, laboratory exercises, etc. If the cr of the course, give the weekly teaching	mponents of the edits are award	course, e.g. ed for the whole	WEEKLY TEACHING HOURS		CREDITS
		Lectures	4		6
Add rows if necessary. The organisation of methods used are described in detail at (d)	-	ie teaching			
COURSE TYPE	Specialised	general knowl	edge		
general background, special background, specialised general knowledge, skills development					
PREREQUISITE COURSES:	There are no prerequisite courses. Students must have			must have	
	at least knowledge of Statics and Strength materials.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (in Engl	ish)			
COURSE WEBSITE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After the end of the course, the students will be able to:

- understand the basic principles of design and analysis of steel structures
- classify the steel cross sections
- calculate the load-bearing capacity of steel cross sections
- calculate the strength of members against buckling
- design simple connections of members
- design simple structures based on Eurocode 3.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology	Project planning and management
	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Autonomous work.
- Decision making.
- Production of free, creative and inductive thinking.

3. SYLLABUS

- Introduction to the design of steel structures according to Eurocode 3.
- Limit states of steel design.
- Classification of steel sections.
- Steel structural forms.

- Moment and shear resistance of steel members.
- Design of steel beams.
- Design of steel members subjected to combined bending and axial force.
- Stability of steel members. Design of steel members under compression. Lateral buckling.
- Steel connections (Welded -Bolted connections).
- Lateral-torsional buckling of structural elements.
- Design of members subjected to combined biaxial bending and compression force.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face lectures	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	PowerPoint.	aterial is presented using ocess using e-class on line
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	52
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Application of methods solving practical problems in class	16
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Independent study	82
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course Load (25 hours of workload per credit unit)	150
STUDENT PERFORMANCE	The students will be evaluated	ated as follows:
EVALUATION Description of the evaluation procedure Language of evaluation, methods of	 final exam (including pranswering questions) individual practice task 	C C
evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	The degree of the final exar factor greater than or equal student's performance in th value of the factor will be 1. get an A in the exercises.	l to one depending on the le exercises. This maximum
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

- Suggested bibliography:

- Steel Structures'. C.K Baniotopoulos, Th. N. Nikolaidis. Publisher: Ziti Pelagia & SIA I.K.E. (in Greek)
- Design of Stell Structures with Applications according to Eurocode 3'. I. Vayas, I. Ermopoulos, G. Ioannidis. Publisher: Kleidarithmos Ltd. (in Greek)
- Steel Structures'. A. Giannopoulos. Publisher: Gotsis Konstantinos & Co. (in Greek)
- Steel Structures'. C.K Baniotopoulos. Publisher: Ziti Pelagia & SIA I.K.E. (in Greek)
- Steel Structures-Analysis and Dimensioning'. I. Vayas. Publisher: Kleidarithmos Ltd. (in Greek)

COMPUTER PROGRAMMING AND COMPUTATIONAL APPLICATIONS IN CIVIL ENGINEERING II

1. GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTME	DEPARTMENT OF CIVIL ENGINEERING			
LEVEL OF STUDIES	UNDERGRA	DUATE			
COURSE CODE	40403		SEMESTER	4 th	
COURSE TITLE		COMPUTER PROGRAMMING AND COMPUTATIONAL APPLICATIONS IN CIVIL ENGINEERING II			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the whole of the course, give the weekly teach	mponents of the e credits are aw	e course, e.g. varded for the	WEEKLY TEACHI HOURS	ING	CREDITS (ECTS)
Lectur	uresandLaboratoryExercises 5 6 hours/week (LECTURES 3 hours&LABORATORY EXERCISES 2 hours)		6		
Add rows if necessary. The organisation of methods used are described in detail at (a		the teaching			
COURSE TYPE	Specialized General Knowledge / Scientific area course			se	
general background, special background, specialised general knowledge, skills development					
PREREQUISITE COURSES:	There are no prerequisite courses, however, the students should already have attended the previous semesters' courses and especially the course "COMPUTER PROGRAMMING AND COMPUTATIONAL APPLICATIONS IN CIVIL ENGINEERING I" and must also attend the current semester courses.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (In Engl	ish)			
COURSE WEBSITE (URL)	platform) : <u>https://eclass</u> <u>https://eclass</u>	.uop.gr/modules/a	itform (Asychronous auth/opencourses.php?f IVIL105/ ice before 2019 :		ning

https://eclass.pat.teiwest.gr/eclass/modules/auth/opencourses.php?fc=86 https://eclass.pat.teiwest.gr/eclass/courses/768116/)

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes
 - Upon successful completion of this course, the students should be able to:
- Realize the importance of computer programming in the computational needs of the Civil Engineer.
- Compile and run computer programs in Fortran programming language.
- Compile and run computer programs in Fortran language for problems of the Civil Engineering specialty.
- Apply the numerical methods by programming in Fortran to solve Civil Engineering problems.
- Get to know the applications of the Fortran language in problems of the Civil Engineering specialty.
- Benefit from the enormous amount of programming work done in Fortranlanguage.
- Take advantage of the huge number of computer programs in Fortran language that have been written for problems of the Civil Engineering specialty.
- Use the numerous available scientific/educational computer programs in the Civil Engineering specialty, written in Fortran language, with the source code available.
- Know the principles of using ready-made computer programs (software).
- Know the legislation for the use of ready-made computer programs (software).
- Know the free software and the open source software for problems of the Civil Engineering specialty.
- Know the computer programming techniques in the computational structural analysis methods.
- Perform computational applications in subjects of the Civil Engineering specialty.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Search for, analysis and synthesis of data and information, with the use of the necessary technology.
- Working independently.
- Team work.
- Working in an interdisciplinary environment.
- Production of new research ideas.
- Production of free, creative and inductive thinking.

3. SYLLABUS

The importance of computer programming in the computational needs of the Civil Engineer. The FORTRAN programming language.Creating and executing computer programs in FORTRAN for Civil Engineering problems.Numerical methods and FORTRAN programming for the solution of Civil Engineering problems.Applications of the FORTRAN programming language in problemsof the Civil Engineering specialty.Using and taking advantage of existing programs for Civil Engineering problems.Free software and open source software for problems of the Civil Engineering specialty.Computer programming techniques in the computational methods of structural analysis. Computational applications in subjects of the Civil Engineering specialty.

DELIVERY	
Face-to-face, Distance learning, etc.	Face-to-face.
ruce-to-juce, Distance learning, etc.	Lectures.
	Exemplary solving of exercises.
	Practice exercises and exercises using a computer.
	Laboratory exercises using a computer.
	Use of Information and Communication Technologies
	in Teaching.
	Classroom and Computer Center B4.
	Office hours for additional student support.
	A Textbook is provided (with a choice among 7 books)
	through the "Evdoxos" Electronic Service.
	Additional printed educational material is provided in
	the classroom.
	Additional educational electronic material is provided
	during teaching and / or through the Open eClass
	eLearning Platform.
	Laboratory exercises are distributed, and their
	solutions are commented in detail in class.
	The additional educational material (printed and
	electronic) is updated and enriched (if required) on an
	annual basis.
	The laboratory exercises are enriched (if required) on an annual basis.
	The students are trained in the research process
	through weekly exercises and additional optional
	projects.

USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of the Information Technologies (ICT) in Teaching Use of open source softward Support of the learning pro- e-class platform. The Laboratory education to Center B4. The open source softward COMPILER AND EDITOR (Feetc. Additional educational elect during the teaching and eLearning Platfing presentations/powerpoint, exercises, exercises, etc.) All weekly laboratory exercises	ing. e. access through the electronic akes place at the Computer are Force 2.0 FORTRAN free distribution software), ctronic material is provided through the Open eClass orm (Electronic
TFACHING METHODS	Activity	Semester workload
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS	ActivityAttendance of Lectures(3 hours x 13 weeks)Participation in optionalpractice exercises thatare given in theclassroom and focus onCivilEngineeringapplicationsPreparation for thelaboratory exercisesLaboratory exercisesusing computer oncomputationalapplications in CivilEngineering(2 hours x 13 weeks)IndependentStudyFinalexamination(3	Semester workload 39 13 13 26 56 3
	hours)	
	Course total	150
	(25 hours workload per credit)	(6 ECTS x25) = 150
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of	computer center B4 and fi in the computer center B4:	at the end of the semester. bratory exercises in the nal laboratory examination all together will contribute in a total percentage of 10%

evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Active systematic attendance of the Lectures of the course by the students and their successful participation in optional practice exercises can contribute "positively" the additional grade "A" at a rate of 5% in the final grade. The final grade of the course is calculated as follows: Final Course Degree = min [(FE + 0.1 E + 0.05 A) , 10] where " FE " is the grade of the Written F inal
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Examination which is not allowed to be less than 4 in order the grades "E" and "A" to be activated. The above applies to the academic year in which the students declare the course for the first time. In case of failure or non-attendance at the Written Final Examination (in June and September), in each subsequent academic year the students are graded only on the basis of the written final examination of the course.

- D.-P. N. Kontoni, "Computer Programming and Computational Applications in Civil Engineering II:Solved Problems and Applications", T.E.I. of Patras, T.E.I. of Western Greece, University of the Peloponnese, Patras, 1998-2019.
- A. S. Karakos, "FORTRAN 77/90/95 & FORTRAN 2003", 2nd edition (contains CD), Kleidarithmos Publications, Athens, 2008. (Book Code in Eudoxus: 13536). [In Greek].
- V. Ch. Mousas, "Programming for Engineers with FORTRAN 95/2003", Ion Publications, Athens, 2006. (Book Code in Eudoxus: 14694). [In Greek].
- S. K. Klimopoulos& A. G. Tsouroplis, "From FORTRAN '77 to FORTRAN '90", 3rd edition, New Technologies Publications, Athens, 2001. (Book Code in Eudoxus: 2154). [In Greek].
 - C. Pozrikidis, "Numerical Computation in Science and Engineering", A. Tziolas& Sons SA Publications, Thessaloniki, 2006. (Book Code in Eudoxus: 18548823). [Translation in Greek]. The original English 1st and 2nd edition by Oxford University Press, 1998, 2008.
 - T. R. Chandrupatla& A. D. Belegundu, "Introduction to Finite Elements in Engineering" 3rd edition (includes CD-ROM with computer programs), Kleidarithmos Publications, Athens, 2006. (Book Code in "Eudoxos" 13671). [Translation in Greek]. The original English 3rd edition by Prentice Hall, 2002 & the new 4th edition by Pearson, 2012.
 - I. Th. Katsikadelis, "Boundary Elements. Theory and Applications" (contains CD-ROM with computer programs), SYMMETRIA Publications S. Athanasopoulos& Co. P.C., Athens, 2012. (Book Code in "Eudoxos" 22768988). [In Greek]. Available also in English: J. T. Katsikadelis, "The Boundary Element Method for Engineers and Scientists. Theory and Applications", 2nd ed., Academic Press, Elsevier, U.K.(2016).
 - Ch. G. Provatidis, "Structural Optimization and Software for Computational Mechanics: Finite Elements, IsogeometricElements, Boundary Elements", A. Tziolas& Sons SA Publications, Athens, 2015. (Book Code in "Eudoxos" 50659719). [In Greek].

- D.-P. N. Kontoni, "Scientific-Educational Computer Programs for the Civil Engineering Specialty", Patras, 1985-2019.
- Extensive relevant Bibliography in the English Language, majoring in Civil Engineering applications.

REINFORCED CONCRETE I

1. GENERAL

SCHOOL	ENGINEERING				
ACADEMIC UNIT	CIVIL ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	40404 SEMESTER 4 th				
COURSE TITLE	REINFORCE	D CONCRETE I			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	i	CREDITS	
Lecture	res and laboratory exercises		4+2		6
· · · · ·	Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE	Specialised general knowledge				
general background, special background, specialised general knowledge, skills development					
PREREQUISITE COURSES:	There are no prerequisite courses. Students must have				
	at least knowledge of Statics and Strength materials.				
LANGUAGE OF INSTRUCTION and	Greek				
EXAMINATIONS:					
IS THE COURSE OFFERED TO	Yes (in English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
Guidelines for writing Learning Outcomes

After the end of the course, the students will be able to:

Theory

- understand the mechanical behavior of concrete and steel
- calculate design loads based on Eurocode 1
- calculate the dimensions and necessary reinforcement of linear elements of reinforced concrete according to Eurocode 2
- calculate the dimensions and necessary reinforcement of surface elements (one direction and two directions) of reinforced concrete according to Eurocode 2
- design the reinforcement detailing of floor plans.

Laboratory

After the end of the course, the students will:

- be able to proportion the igredients required for concrete composition
- knowthe production process of concrete, its placement and curing
- know the control procedures and conformity criteria of the steel reinforcement in accordance to thesteel standards and codes
- be able to estimate the strength and grade of concrete with destructive and nondestructive methods.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Analysis and synthesis of data with the use of necessary technology.
- Working independently.
- Team work.
- Project planning and management.

3. SYLLABUS

Theory

- Introduction to the design of reinforced concrete structures based on Eurocode 2.
- Reinforced concrete technology. Mechanical properties of steel and concrete.
- Design of linear members in flexure with axial force based on the ultimate limit state.
- Detailing and sizing of linear reinforced concrete members.

- Design of members in shear based on the ultimate limit state.
- Design and detailing of one and two-way slabs.

Laboratory

- Studying concrete compostion.
- Steel technology regulations.
- Concrete production.
- Mix-batch compliance inspections.
- Assessment of concrete strength by destructive methods.
- Assessment of concrete strength by non-destructive methods.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Part of the teaching material is presented using PowerPoint. Supporting learning process using e-class on line platform and email 		
TEACHING METHODS	Activity Semester workload		
	Lectures	52	
The manner and methods of teaching are described in detail.	Individual practice tasks	16	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Project workimplementing the learning outcomes	20	
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Laboratory exercises and writing laboratory reports	20	
	Independent study	42	
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course Load (25 hours of workload per credit unit)	150	
STUDENT PERFORMANCE	The students will be evaluated as follows:		
EVALUATION <i>Description of the evaluation procedure</i>	 final exam (including problem solving and answering questions) individual practice tasks project work 		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written	• final lab exam. s,		
work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation,	 Final theory exam (80%). The grade of the final exam will be multiplied by a factor greater than or 		

- Suggested bibliography:

- Elements for the calculation and configuration of structures'. Karavezyroglou-Weber. Publisher: Viola (in Greek)
- 'Reinforced Concrete'. Volumes A and B, Th. Georgopoulos, Self-publishing (in Greek)
- 'Reinforced of Reinforced Concrete Structures I'. A. Tsonos. Publisher: Sofia (in Greek)
- 'Reinforced Concrete Design'. Bill Mosley, John Bungey, Ray Hulse. Publisher: Kleidarithmos
- 'Reinforced Concrete Structures According to the new Regulations of R/C & Earthquake Structure'. G. Penelis, K. Stylianides, A. Kappos, C. Ignatiadis. Publications: Aivazis Publications (in Greek)
- 'Reinforced Concrete lessonsI,II'. M.Fardis. Publisher: University of Patras. (in Greek)

ARCHITECTURAL COMPOSITION

1. GENERAL

SCHOOL	ENGINEERII	NG		
ACADEMIC UNIT	CIVIL ENGINEERING			
LEVEL OF STUDIES	BACHELOR			
COURSE CODE	40405 SEMESTER 4 th			4 th
COURSE TITLE	ARCHITECTURAL COMPOSITION			
INDEPENDENT TEACHI	NG ACTIVITI	ES	WEEKLY	
if credits are awarded for separate co		-	TEACHING	
lectures, laboratory exercises, etc. If th		-	HOURS	
whole of the course, give the weekly teach	hing hours and	the total credits	noons	
			2+2	4
Add rows if necessary. The organisation of	f teaching and	the teaching		
methods used are described in detail at (a	l).			
COURSE TYPE	General bad	ckground		
	General Sa			
general background,				
special background, specialised general				
knowledge, skills development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	Greek			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES (ENGLIS	5H)		
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The students should be able to shape the space, inside and outside of the buildings that constitute their object, as well as more widely in the surrounding area of architectural ensembles.

Upon successful completion of the course the student will be able to:

- Understand the fundamental principles of architectural composition and the basic concepts and elements that make up space.
- Be updated on modern architectural concepts.
- Manage problems related to professional activity.
- Understand the functional and morphological study of simple buildings.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology	Project planning and management			
Adapting to new situations	Respect for difference and multiculturalism			
Decision-making	Respect for the natural environment			
Working independently	Showing social, professional and ethical responsibility and sensitivity to gender issues			
Team work	Criticism and self-criticism			
Working in an international environment	Production of free, creative and inductive thinking			
Working in an interdisciplinary environment				
Production of new research ideas	Others			
Autonomous work				
Group work				

3. SYLLABUS

Introduction to the concepts of Architectural Composition and Methods of Architectural Design. Approach to the synthetic process: conception, investigation, formulation, processing, finalization, presentation of a proposal. Reference to the individual concepts and symbols of space such as symmetry-asymmetry, introversion-outflow, transparency-opacity, capacity-static, vacuum-full, public-private, atomic-collective, built-free space, building coefficient, coverage rate, etc. The relationship of volumes to each other, but also the inclusion of the total volume in the wider environment. Interior design. The proportion of the sizes of the individual architectural elements and their significance in the final performance of the form of the work. The management of space in general and the importance of ergonomics combined with the functional and morphological performance of the Architectural Project.

Introduction to the range of problems of space organization, architectural communication and the parameters involved in contemporary design reflection. Verification of the size, character and organization of Architectural and Urban Elements. Materials and construction as integral expression of form. Transfer of building programs into a synthetic proposal. Organization of the synthetic proposal itself, the quality of which will depend on the degree of processing and incorporation into it of basic parameters for Architectural Design.

DELIVERY	In classroom		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Yes		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Lectures Practice exercises that focus on the application of methodologies and	25 25	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity,	analysis of studies in smaller groups of students	50	
etc. The student's study hours for each learning activity are given as well as the hours of non-	Group work on a study	50	
directed study according to the principles of the ECTS	Course total	100	
STUDENT PERFORMANCE			
EVALUATION <i>Description of the evaluation procedure</i>	i. Written final examinationii. Presentation of group work		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

- Suggested bibliography:

ΕΜΠ, Σχολή Αρχιτεκτόνων Μηχανικών, Εισαγωγή στην Αρχιτεκτονική Σύνθεση Ι, 2003, Εκδόσεις Παπασωτηρίου.

Τζώνος Π., Οργάνωση της αρχιτεκτονικής μελέτης, [ΦΕΚ 944/Τεύχ. Β΄/2004], Εκδόσεις Ζήτη.

Φατούρος Δημήτρης, Ένα συντακτικό της Αρχιτεκτονικής Σύνθεσης, Εκδόσεις Παπασωτηρίου.

Arnheim R., Η δυναμική της αρχιτεκτονικής μορφής, [ΦΕΚ 382/ Τεύχ. Β΄/24-3-2005], Εκδόσεις UNIVERSITY STUDIO PRESS, ISBN 960-12-1194.

Ching Francis, Αρχιτεκτονική, Μορφή, Χώρος, Διάταξη 2η Έκδοση, [ΦΕΚ 403/Τεύχ. Β'/2003], Εκδόσεις ΙΩΝ, ISBN 960-405-945-9.

Neufert / Neff, Αρχιτεκτονικός Σχεδιασμός και Εφαρμογές, [ΦΕΚ 451/Τεύχ. Β΄/2002], Εκδόσεις Κλειδάριθμος, Κωδ. 40504.

Neufert Ernst, Οικοδομική και Αρχιτεκτονική Σύνθεση, 2003, [ΦΕΚ 334/Τεύχ. Β'/2006], Εκδόσεις Μ. Γκιούρδας.

- Related academic journals:

SPECIAL TOPICS IN SURVEYING-GEOGRAPHIC INFORMATION SYSTEMS

1. GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF CIVIL ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	40406 SEMESTER 4th			4th
COURSE TITLE	SPECIAL TOPICS IN SURVEYING-GEOGRAPHIC INFORMATION SYSTEMS			IC
if credits are awarded for separate co lectures, laboratory exercises, etc. If the	INDEPENDENT TEACHING ACTIVITIES dits are awarded for separate components of the course, e.g. es, laboratory exercises, etc. If the credits are awarded for the the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS
			2 (Lectures/Theor	4 ry)
			3 (Laboratory))
Add rows if necessary. The organisation of methods used are described in detail at (a		the teaching		
COURSE TYPE	Scientific area course			L
general background, special background, specialised general knowledge, skills development				
PREREQUISITE COURSES:	Surveying			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (in English)			
COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The goal of the course is to provide knowledge to the students in the area of topography by modern instruments and techniques. The course aims at familiarizing the students with modern topographical instruments and techniques as applied to civil engineering works as well as to chartography, earthquake monitoring, landslides monitoring and ground digital modeling. Another basic goal of the course is to introduce students to Geographical Information Systems (GIS) and to a related software. Finally, during the lab part of the course, the students become familiar with the use of the Total Station and conduct complex exercises as parts of teams.

After the successful completion of the course, students are expected to be able to:

- Know the basic areas of modern topographical applications
- Know the basic design methods in technical works
- Create and use a digital ground modeling
- Know fundamental concepts and apllications of chartography
- Draw conclusions from measurements of surface movements (faults, landslides)
- Understand GIS and use relevant software
- Know the basic principles and methods applying systems GPS/GNSS

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others...

.....

- Working indepedently
- Team work
- Decision-making

3. SYLLABUS

Lectures (Theory):

Modern topographic instruments (EDM, Total Station, GPS/GNSS, Laser Scanner etc). Geometrical design of technical works: complex traversing, geometrical design of curved and straight lines, calculation of the volume of earthworks.

Digital models of the ground.

Complex topographical applications in infrastructure works (monitoring of landslides-dams, vibrations of bridges, buildings and monuments, townplanning mappings, monitoring of natural disasters such as floods, volcanos etc).

Topography and seismology: topographical methods of computation.

Geographical information systems (GIS): introduction to GIS, landmaps, multi-subject maps, applications in infrastructure works and their management.

GIS software (open access code) and familiarity through exercises.

Laboratory:

Introduction to mapping using total station. Drawing of a closed traversing for the mapping of a building complex. Determination of the nodes of a traversing and construction of relevant report.

Measurement of the lengths of the sides of the traversing.

Levelling of the nodes of a traversing and error correction. Intersection and determination of coordinates and direction of the starting note of the traversing. Measurement by a total station of the length of the sides and the angles of the traversing. Computation and correction of a closed traversing with respect to coordinates and angles. Measurement and calculation of the coordinates of the roof corners of a building and other elements around it. Drawing of a topographic diagram on the basis of code provisions. Familiarity with the use of GPS/GNSS. Calculation of the coordinates of a traversing by GPS/GNSS and electronic drawing of the diagram in accordance with code provisions.

DELIVERY	DELIVERY Face-to –face in classroom or lab			
Face-to-face, Distance learning, etc.	Face-to –face in classroom or lab			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Support of learning process through the electronic platform e-class			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Lectures Field exercises	26 39		
	Individual theoretical work	30		
	Team lab work	30		
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	125		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Final exam 50% Individual theoretical work Laboratory (exercises & exa			

- Suggested bibliography:

P.Savvaidis, I.Ifantis, I.Doukas, Geodesy II: Topographical Mappings and Design, Kyriakidi Press, Thessaloniki, 2017 (in Greek)-code in Evdoxos: 6203.

G.Pantazis, E.Lambrou, Applied Geodesy, Ziti Press, Thessaloniki, 2010 (in Greek)-code in Evdoxos: 11432.

P.A.Longley, M.F.Goodchild, D.J.Macquire, D.W.Rhind, Geographical Information Science and Systems (GIS), 4th edition, Wiley, 2015 (Translation in Greek by Klidarithmos, Athens, 2010)

- Related academic journals:

Journal of Surveying Engineering of ASCE